SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bodhicharla Rakesh) "

Sökning: WFRF:(Bodhicharla Rakesh)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bodhicharla, Rakesh, et al. (författare)
  • Membrane Fluidity Is Regulated Cell Nonautonomously by Caenorhabditis elegans PAQR-2 and Its Mammalian Homolog AdipoR2
  • 2018
  • Ingår i: Genetics. - : Oxford University Press (OUP). - 0016-6731 .- 1943-2631. ; 210:1, s. 189-201
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintenance of membrane properties is an essential aspect of cellular homeostasis of which the regulatory mechanisms remain mostly uncharacterized. In Caenorhabditis elegans, the PAQR-2 and IGLR-2 proteins act together as a plasma membrane sensor that responds to decreased fluidity by promoting fatty acid desaturation, hence restoring membrane fluidity. Here, we used mosaic analysis for paqr-2 and iglr-2, and tissue-specific paqr-2 expression, to show that membrane homeostasis is achieved cell nonautonomously. Specifically, we found that expression of paqr-2 in the hypodermis, gonad sheath cells, or intestine is sufficient to suppress systemic paqr-2 mutant phenotypes, including tail tip morphology, membrane fluidity in intestinal cells, cold and glucose intolerance, vitellogenin transport to the germline, germ cell development, and brood size. Finally, we show that the cell nonautonomous regulation of membrane homeostasis is conserved in human cells: HEK293 cells that express AdipoR2, a homolog of paqr-2, are able to normalize membrane fluidity in distant cells where AdipoR2 has been silenced. Finally, using C. elegans mutants and small interfering RNA against Δ9 stearoyl-CoA desaturase in HEK293 cells, we show that Δ9 desaturases are essential for the cell nonautonomous maintenance of membrane fluidity. We conclude that cells are able to share membrane components even when they are not in direct contact with each other, and that this contributes to the maintenance of membrane homeostasis in C. elegans and human cells.
  •  
2.
  • Busayavalasa, Kiran, et al. (författare)
  • Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins
  • 2020
  • Ingår i: Plos Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 16:8
  • Tidskriftsartikel (refereegranskat)abstract
    • TheC.elegansproteins PAQR-2 (a homolog of the human seven-transmembrane domain AdipoR1 and AdipoR2 proteins) and IGLR-2 (a homolog of the mammalian LRIG proteins characterized by a single transmembrane domain and the presence of immunoglobulin domains and leucine-rich repeats in their extracellular portion) form a complex that protects against plasma membrane rigidification by promoting the expression of fatty acid desaturases and the incorporation of polyunsaturated fatty acids into phospholipids, hence increasing membrane fluidity. In the present study, we leveraged a novel gain-of-function allele of PAQR-1, a PAQR-2 paralog, to carry out structure-function studies. We found that the transmembrane domains of PAQR-2 are responsible for its functional requirement for IGLR-2, that PAQR-1 does not require IGLR-2 but acts via the same pathway as PAQR-2, and that the divergent N-terminal cytoplasmic domains of the PAQR-1 and PAQR-2 proteins serve a regulatory function and may regulate access to the catalytic site of these proteins. We also show that overexpression of human AdipoR1 or AdipoR2 alone is sufficient to confer increased palmitic acid resistance in HEK293 cells, and thus act in a manner analogous to the PAQR-1 gain-of-function allele. Author summary Cells are enclosed within membranes primarily composed of fat. When membranes contain much saturated fats, they tend to become more rigid, as with butter. Conversely, when membranes are rich in unsaturated fats, they become more fluid, as with vegetable oils. Our goal is to better understand how cells monitor and adjust the composition and properties of their membranes. We focus on a small group of proteins found in all animals, and called AdipoR1 and AdipoR2 in humans, and PAQR-1 and PAQR-2 in the wormCaenorhabditis elegans. We now found a version of PAQR-1 that is more "active", and promotes increased levels of unsaturated fats in membranes. By swapping different parts of the PAQR-1 protein with those of PAQR-2, we were able to determine which protein parts played which roles. We found that it is the transmembrane domains of PAQR-2 that dictate its requirements for another protein called IGLR-2 and that the intracellular domains of PAQR-1 and PAQR-2 play a regulatory role. These studies help understand how AdipoR1 and AdipoR2 regulate membrane composition in human cells, which is a vital function for us to thrive on diets that vary greatly in the types of fats that they contain.
  •  
3.
  • Devkota, Ranjan, et al. (författare)
  • A genetic titration of membrane composition in Caenorhabditis elegans reveals its importance for multiple cellular and physiological traits
  • 2021
  • Ingår i: Genetics. - 0016-6731 .- 1943-2631. ; 219:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The composition and biophysical properties of cellular membranes must be tightly regulated to maintain the proper functions of myriad processes within cells. To better understand the importance of membrane homeostasis, we assembled a panel of five Caenorhabditis elegans strains that show a wide span of membrane composition and properties, ranging from excessively rich in saturated fatty acids (SFAs) and rigid to excessively rich in polyunsaturated fatty acids (PUFAs) and fluid. The genotypes of the five strain are, from most rigid to most fluid: paqr-1(tm3262); paqr-2(tm3410), paqr-2(tm3410), N2 (wild-type), mdt-15(et14); nhr-49(et8), and mdt-15(et14); nhr-49(et8); acs-13(et54). We confirmed the excess SFA/rigidity-to-excess PUFA/fluidity gradient using the methods of fluorescence recovery after photobleaching (FRAP) and lipidomics analysis. The five strains were then studied for a variety of cellular and physiological traits and found to exhibit defects in: permeability, lipid peroxidation, growth at different temperatures, tolerance to SFA-rich diets, lifespan, brood size, vitellogenin trafficking, oogenesis, and autophagy during starvation. The excessively rigid strains often exhibited defects in opposite directions compared to the excessively fluid strains. We conclude that deviation from wild-type membrane homeostasis is pleiotropically deleterious for numerous cellular/physiological traits. The strains introduced here should prove useful to further study the cellular and physiological consequences of impaired membrane homeostasis.
  •  
4.
  • Ruiz, Mario, 1984, et al. (författare)
  • Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity
  • 2019
  • Ingår i: Elife. - 2050-084X. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.
  •  
5.
  • Ruiz, Mario, 1984, et al. (författare)
  • Membrane fluidity is regulated by the C-elegans transmembrane protein FLD-1 and its human homologs TLCD1/2
  • 2018
  • Ingår i: eLife. - 2050-084X. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy