SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boegh Eva) "

Sökning: WFRF:(Boegh Eva)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Stoy, Paul C., et al. (författare)
  • A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape scale heterogeneity
  • 2013
  • Ingår i: Agricultural and Forest Meteorology. - : Elsevier BV. - 1873-2240 .- 0168-1923. ; 171, s. 137-152
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy balance at most surface-atmosphere flux research sites remains unclosed. The mechanisms underlying the discrepancy between measured energy inputs and outputs across the global FLUXNET tower network are still under debate. Recent reviews have identified exchange processes and turbulent motions at large spatial and temporal scales in heterogeneous landscapes as the primary cause of the lack of energy balance closure at some intensively-researched sites, while unmeasured storage terms cannot be ruled out as a dominant contributor to the lack of energy balance closure at many other sites. We analyzed energy balance closure across 173 ecosystems in the FLUXNET database and explored the relationship between energy balance closure and landscape heterogeneity using MODIS products and GLOBEstat elevation data. Energy balance closure per research site (C-EBS)averaged 0.84 +/- 0.20, with best average closures in evergreen broadleaf forests and savannas (0.91-0.94) and worst average closures in crops, deciduous broadleaf forests, mixed forests and wetlands (0.70-0.78). Half-hourly or hourly energy balance closure on a percent basis increased with friction velocity (u.) and was highest on average under near-neutral atmospheric conditions. C-EBS was significantly related to mean precipitation, gross primary productivity and landscape-level enhanced vegetation index (EVI) from MODIS, and the variability in elevation, MODIS plant functional type, and MODIS EVI. A linear model including landscape-level variability in both EVI and elevation, mean precipitation, and an interaction term between EVI variability and precipitation had the lowest Akaike's information criterion value. C-EBS in landscapes with uniform plant functional type approached 0.9 and C-EBS in landscapes with uniform EVI approached 1. These results suggest that landscape-level heterogeneity in vegetation and topography cannot be ignored as a contributor to incomplete energy balance closure at the flux network level, although net radiation measurements, biological energy assimilation, unmeasured storage terms, and the importance of good practice including site selection when making flux measurements should not be discounted. Our results suggest that future research should focus on the quantitative mechanistic relationships between energy balance closure and landscape-scale heterogeneity, and the consequences of mesoscale circulations for surface-atmosphere exchange measurements. (C) 2012 Elsevier B.V. All rights reserved.
  •  
2.
  • Mallick, Kaniska, et al. (författare)
  • A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes
  • 2014
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 141:5, s. 243-261
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of Penman-Monteith (PM) equation in thermal remote sensing based surface energy balance modeling is not prevalent due to the unavailability of any direct method to integrate thermal data into the PM equation and due to the lack of physical models expressing the surface (or stomatal) and boundary layer conductances (g(S) and g(B)) as a function of surface temperature. Here we demonstrate a new method that physically integrates the radiometric surface temperature (T-S) into the PM equation for estimating the terrestrial surface energy balance fluxes (sensible heat, H and latent heat, lambda E). The method combines satellite T-S data with standard energy balance closure models in order to derive a hybrid closure that does not require the specification of surface to atmosphere conductance terms. We call this the Surface Temperature Initiated Closure (STIC), which is formed by the simultaneous solution of four state equations. Taking advantage of the psychrometric relationship between temperature and vapor pressure, the present method also estimates the near surface moisture availability (M) from T-S, air temperature (T-A) and relative humidity (R-H), thereby being capable of decomposing lambda E into evaporation (lambda E-E) and transpiration (lambda E-T). STIC is driven with T-S, T-A, R-H, net radiation (R-N), and ground heat flux (G). T-S measurements from both MODIS Terra (MOD11A2) and Aqua (MYD11A2) were used in conjunction with FLUXNET R-N, G, T-A, R-H, lambda E and H measurements corresponding to the MODIS equatorial crossing time. The performance of STIC has been evaluated in comparison to the eddy covariance measurements of lambda E and H at 30 sites that cover a broad range of biomes and climates. We found a RMSE of 37.79 (11%) (with MODIS Terra T-S) and 44.27 W m(-2) (15%) (with MODIS Aqua T-S) in lambda E estimates, while the RMSE was 37.74(9%) (with Terra) and 44.72 W m(-2) (8%) (with Aqua) in H. STIC could efficiently capture the lambda E dynamics during the dry down period in the semi-arid landscapes where lambda E is strongly governed by the subsurface soil moisture and where the majority of other lambda E models generally show poor results. Sensitivity analysis revealed a high sensitivity of both the fluxes to the uncertainties in T-S. A realistic response and modest relationship was also found when partitioned lambda E components (lambda E-E and lambda E-T) were compared to the observed soil moisture and rainfall. This is the first study to report the physical integration of T-S into the PM equation and finding analytical solution of the physical (g(B)) and physiological conductances (g(S)). The performance of STIC over diverse biomes and climates points to its potential to benefit future NASA and NOAA missions having thermal sensors, such as HyspIRI, GeoSTAR and GOES-R for mapping multi-scale lambda E and drought. (C) 2013 Elsevier Inc. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy