SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boerjan W) "

Sökning: WFRF:(Boerjan W)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boerjan, W., et al. (författare)
  • Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction
  • 1995
  • Ingår i: The Plant Cell. - : JSTOR. - 1040-4651 .- 1532-298X. ; 7:9, s. 1405-1419
  • Tidskriftsartikel (refereegranskat)abstract
    • We have isolated seven allelic recessive Arabidopsis mutants, designated superroot (sur1-1 to sur1-7), displaying several abnormalities reminiscent of auxin effects. These characteristics include small and epinastic cotyledons, an elongated hypocotyl in which the connection between the stele and cortical and epidermal cells disintegrates, the development of excess adventitious and lateral roots, a reduced number of leaves, and the absence of an inflorescence. When germinated in the dark, sur1 mutants did not develop the apical hook characteristic of etiolated seedlings, We were able to phenocopy the Sur1(-) phenotype by supplying auxin to wild-type seedlings, to propagate sur7 explants on phytohormone-deficient medium, and to regenerate shoots from these explants by the addition of cytokinins alone to the culture medium. Analysis by gas chromatography coupled to mass spectrometry indicated increased levels of both free and conjugated indole-3-acetic acid. sur1 was crossed to the mutant axr2 and the altered-auxin response mutant ctr1. The phenotype of both double mutants was additive. The sur1 gene was mapped on chromosome 2 at 0.5 centimorgans from the gene encoding phytochrome B.
  •  
2.
  • Tuskan, G A, et al. (författare)
  • The genome of black cottonwood, Populus trichocarpa (Torr. & Gray).
  • 2006
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 1095-9203 .- 0036-8075. ; 313:5793, s. 1596-604
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
  •  
3.
  • Lescot, M, et al. (författare)
  • Annotation of a 95-kb Populus deltoides genomic sequence reveals a disease resistance gene cluster and novel class I and class II transposable elements.
  • 2004
  • Ingår i: Theoretical and Applied Genetics. - : Springer Science and Business Media LLC. - 0040-5752 .- 1432-2242. ; 109:1, s. 10-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Poplar has become a model system for functional genomics in woody plants. Here, we report the sequencing and annotation of the first large contiguous stretch of genomic sequence (95 kb) of poplar, corresponding to a bacterial artificial chromosome clone mapped 0.6 centiMorgan from the Melampsora larici-populina resistance locus. The annotation revealed 15 putative genetic objects, of which five were classified as hypothetical genes that were similar only with expressed sequence tags from poplar. Ten putative objects showed similarity with known genes, of which one was similar to a kinase. Three other objects corresponded to the toll/interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat class of plant disease resistance genes, of which two were predicted to encode an amino terminal nuclear localization signal. Four objects were homologous to the Ty1/copia family of class I transposable elements, one of which was designated Retropop and interrupted one of the disease resistance genes. Two other objects constituted a novel Spm-like class II transposable element, which we designated Magali.
  •  
4.
  • Sterky, Fredrik, et al. (författare)
  • Gene discovery in the wood-forming tissues of poplar : Analysis of 5,692 expressed sequence tags
  • 1998
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 95:22, s. 13330-13335
  • Tidskriftsartikel (refereegranskat)abstract
    • A rapidly growing area of genome research is the generation of expressed sequence tags (ESTs) in which large numbers of randomly selected cDNA clones are partially sequenced. The collection of ESTs reflects the level and complexity of gene expression in the sampled tissue, To date, the majority of plant ESTs are from nonwoody plants such as Arabidopsis, Brassica, maize, and rice. Here, we present a large-scale production of ESTs from the wood-forming tissues of two poplars, Populus tremula L, x tremuloides Michx, and Populus trichocarpa 'Trichobel.' The 5,692 ESTs analyzed represented a total of 3,719 unique transcripts for the two cDNA libraries, Putative functions could be assigned to 2,245 of these transcripts that corresponded to 820 protein functions. Of specific interest to forest biotechnology are the 4% of ESTs involved in various processes of cell wall formation, such as lignin and cellulose synthesis, 5% similar to developmental regulators and members of known signal transduction pathways, and 2% involved in hormone biosynthesis. An additional 12% of the ESTs show ed no significant similarity to any other DNA or protein sequences in existing databases. The absence of these sequences from public databases may indicate a specific role for these proteins in wood formation. The cDNA libraries and the accompanying database are valuable resources for forest research directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy