SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bogard Matthew J.) "

Sökning: WFRF:(Bogard Matthew J.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Reithmaier, Gloria M.S., et al. (författare)
  • Carbonate chemistry and carbon sequestration driven by inorganic carbon outwelling from mangroves and saltmarshes
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Mangroves and saltmarshes are biogeochemical hotspots storing carbon in sediments and in the ocean following lateral carbon export (outwelling). Coastal seawater pH is modified by both uptake of anthropogenic carbon dioxide and natural biogeochemical processes, e.g., wetland inputs. Here, we investigate how mangroves and saltmarshes influence coastal carbonate chemistry and quantify the contribution of alkalinity and dissolved inorganic carbon (DIC) outwelling to blue carbon budgets. Observations from 45 mangroves and 16 saltmarshes worldwide revealed that >70% of intertidal wetlands export more DIC than alkalinity, potentially decreasing thepH of coastal waters. Porewater-derived DIC outwelling (81 ± 47 mmol m−2 d−1 in mangroves and 57 ± 104 mmol m−2 d−1 in saltmarshes) was the major term in blue carbon budgets. However, substantial amounts of fixed carbon remain unaccounted for. Concurrently, alkalinity outwelling was similar or higher than sediment carbon burial and is therefore a significant but often overlooked carbon sequestration mechanism.
  •  
2.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
3.
  • Bogard, Matthew J., et al. (författare)
  • Patterns of Spring/Summer Open-Water Metabolism Across Boreal Lakes
  • 2020
  • Ingår i: Ecosystems (New York. Print). - : Springer Science+Business Media B.V.. - 1432-9840 .- 1435-0629. ; 23, s. 1581-1597
  • Tidskriftsartikel (refereegranskat)abstract
    • Northern regions host the greatest density of surface water globally, but knowledge of lake metabolism in this vast yet remote landscape is limited. Here, we used an oxygen stable isotope approach to quantify patterns and drivers of surface layer metabolism in lakes throughout an approximately 10(6) km(2) tract of boreal Canada. Ecosystem gross primary production (GPP) and respiration rates (R) were much higher than previously assumed for spring and summer months. Both rates were strongly linked to nitrogen (N) concentrations, not light availability, despite earlier work showing community-level light effects. Net ecosystem production (NEP = GPP - R) was negative for most lakes. Hierarchical modeling revealed that although NEP is strongly stabilized via similar effects of N on both GPP and R, NEP decreases with increasing dissolved organic carbon (DOC). These interactive controls on NEP were not predictable from bivariate regressions linking NEP to physical, chemical or habitat-specific drivers. In contrast to expectations, NEP was higher in warmer waters due to increased temperature dependency of GPP, not R. Temperature and DOC content had opposing effects on NEP in all but the most dystrophic lakes, possibly implying a muted response of metabolic balances to future shifts in both regional climate and OC delivery.
  •  
4.
  • Vachon, Dominic, et al. (författare)
  • Paired O2-€“CO2 measurements provide emergent insights into aquatic ecosystem function
  • 2020
  • Ingår i: Limnology and Oceanography Letters. - : Wiley. - 2378-2242. ; 5:4, s. 287-294
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolic stoichiometry predicts that dissolved oxygen (O 2) and carbon dioxide (CO 2) in aquatic ecosystems should covary inversely; however, field observations often diverge from theoretical expectations. Here, we propose a suite of metrics describing this O 2 and CO 2 decoupling and introduce a conceptual framework for interpreting these metrics within aquatic ecosystems. Within this framework, we interpret cross-system patterns of high-frequency O 2 and CO 2 measurements in 11 northern lakes and extract emergent insights into the metabolic behavior and the simultaneous roles of chemical and physical forcing in shaping ecosystem processes. This approach leverages the power of high-frequency paired O 2-CO 2 measurements, and yields a novel, integrative aquatic system typology which can also be applicable more broadly to streams and rivers, wetlands and marine systems. Dissolved oxygen (O 2) remains one of the most studied attributes of aquatic ecosystems since the beginning of modern ecology. In 1957, G. E. Hutchinson famously wrote "A skillful limnologist can probably learn more about the nature of a lake from a series of oxygen determinations than from any other kind of chemical data" (Hutchinson 1957). The value of oxygen as an indicator of ecosystem function stems from its role in biogeochemical reactions, where it regulates
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy