SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boilard T.) "

Sökning: WFRF:(Boilard T.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Balliu, Enkeleda, PhD student, et al. (författare)
  • High-efficiency radiation-balanced Yb-doped silica fiber laser with 200-mW output
  • 2024
  • Ingår i: Optics Letters. - : Optica Publishing Group. - 0146-9592 .- 1539-4794. ; 49:8, s. 2021-2024
  • Tidskriftsartikel (refereegranskat)abstract
    • The focus of this study was the development of a second generation of fiber lasers internally cooled by anti-Stokes fluorescence. The laser consisted of a length of a single-mode fiber spliced to fiber Bragg gratings to form the optical resonator. The fiber was single-moded at the pump (1040 nm) and signal (1064 nm) wavelengths. Its core was heavily doped with Yb, in the initial form of CaF2 nanoparticles, and co-doped with Al to reduce quenching and improve the cooling efficiency. After optimizing the fiber length (4.1 m) and output-coupler reflectivity (3.3%), the fiber laser exhibited a threshold of 160 mW, an optical efficiency of 56.8%, and a radiation-balanced output power (no net heat generation) of 192 mW. On all three metrics, this performance is significantly better than the only previously reported radiation-balanced fiber laser, which is even more meaningful given that the small size of the single-mode fiber core (7.8-µm diameter). At the maximum output power (∼2 W), the average fiber temperature was still barely above room temperature (428 mK). This work demonstrates that with anti-Stokes pumping, it is possible to induce significant gain and energy storage in a small-core Yb-doped fiber while keeping the fiber cool. 
  •  
3.
  • Balliu, Enkeleda, PhD student, et al. (författare)
  • Improved Closed-Loop Slow-Light Temperature Sensor With Millidegree Resolution for Laser Cooling
  • 2023
  • Ingår i: Proceedings - 28th International Conference on Optical Fiber Sensors, OFS 2023. - : Optica Publishing Group.
  • Konferensbidrag (refereegranskat)abstract
    • For applications such as laser cooling of doped fibers, where it is critical to measure accurately the temperature of a cooled fiber that is very close to room temperature, it is paramount to develop a reliable, very short (mm) fiber temperature sensor with millikelvin resolution and very little drift. We report a second generation of a unique slow-light fiber Bragg grating (FBG) temperature sensor that meets these stringent requirements. Experiments and modeling establish that its temperature response depends only on well-known material constants of the silica FBG and the response of the probe laser's wavelength controller. The response is independent of the linewidth of the slow-light resonance, hence different FBGs and/or resonances have the exact same response. Examples of measured cooling in optically pumped Yb-doped fibers show that more reliable thermal contact with the cooled fiber is obtained by wrapping the FBG and the cooled fiber. 
  •  
4.
  • Frey, B. N., et al. (författare)
  • Cooling Yb-Doped Silica Fibers and Fiber Lasers with Anti-Stokes Pumping
  • 2023
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510659797
  • Konferensbidrag (refereegranskat)abstract
    • Optical cooling in Yb-doped silica fibers using anti-Stokes fluorescence has become a subject of great interest in the fiber laser community. This paper provides an update on the development of silica fibers designed specifically to enhance their cooling properties. This growing list includes a new, nearly single-mode fiber with a borophosphosilicate core that produced –65 mK of cooling with only 260 mW of 1040-nm pump power. The silica compositions that have now been successfully cooled at atmospheric pressure by anti-Stokes fluorescence by our team include aluminosilicate, aluminofluorosilicate, borophosphosilicate, and aluminosilicate doped with one of three different alkali-earth nanoparticles (Ba, Sr, and Ca). By fitting the measured temperature dependence of the cooled fiber on pump power, two key parameters that control the degree of cooling are inferred, namely the critical quenching concentration and the absorptive loss due to impurities. The inferred values compiled for the fibers that cooled indicate that the extracted heat is highest when the Yb concentration is 2 wt.% or more (to maximize heat extraction), the Al concentration is ~0.8 wt.% or greater (to reduce quenching), and the absorptive loss is below approximately 15 dB/km, and ideally below 5 dB/km (to minimize heating due to pump absorption). Only two of the reported fibers, an LaF3-doped and an LuF3-doped nanoparticle fiber, did not cool, because their Yb and Al concentrations were not sufficiently high. This analysis shows that through careful composition control (especially the Al and Yb concentrations) and minimization of the OH contamination, a new generation of Yb-doped silica fibers is emerging with higher Yb concentrations, greater resistance to quenching, and lower residual loss than commercial Yb-doped fibers. They can be expected to have a significant impact not only on optically cooled devices but also on a much broader range of fiber lasers and amplifiers. 
  •  
5.
  • Knall, J., et al. (författare)
  • Radiation-balanced silica fiber laser
  • 2021
  • Ingår i: Optica. - 2334-2536. ; 8:6, s. 830-833
  • Tidskriftsartikel (refereegranskat)abstract
    • In optically pumped lasers, heat generated by the quantum defect causes detrimental fluctuations in the output mode, frequency, and power. Common heat-mitigation techniques use bulky mechanical coolers that introduce vibrations, leading to laser frequency and amplitude noise. Here, we present a radiation-balanced fiber laser, optically cooled by anti-Stokes fluorescence (ASF). The gain medium is a silica fiber with a 21-µm-diameter core doped with 2.06 wt. % Yb3+ and co-doped with Al2O3 and F- to reduce concentration quenching. The laser was core-pumped at 1040 nm to create both gain at 1065 nm and ASF cooling at atmospheric pressure. We demonstrate a maximum output power of 114 mW with a slope efficiency of 41% while maintaining near-zero average temperature change. This result could enable the development of fiber lasers with unprecedented coherence and stability. 
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy