SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boissier J.) "

Sökning: WFRF:(Boissier J.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fomalont, E. B., et al. (författare)
  • THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW
  • 2015
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 808:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to similar to 15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from 2014 September to late November, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C 138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at similar to 350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
  •  
2.
  • Meech, K. J., et al. (författare)
  • EPOXI: Comet 103P/Hartley 2 Observations from a Worldwide Campaign
  • 2011
  • Ingår i: Astrophysical Journal Letters. - London : IOP. - 2041-8213 .- 2041-8205. ; 734:L1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Earth- and space-based observations provide synergistic information for space mission encounters by providing data over longer timescales, at different wavelengths and using techniques that are impossible with an in situ flyby. We report here such observations in support of the EPOXI spacecraft flyby of comet 103P/Hartley 2. The nucleus is small and dark, and exhibited a very rapidly changing rotation period. Prior to the onset of activity, the period was ~16.4?hr. Starting in 2010 August the period changed from 16.6?hr to near 19?hr in December. With respect to dust composition, most volatiles and carbon and nitrogen isotope ratios, the comet is similar to other Jupiter-family comets. What is unusual is the dominance of CO 2 -driven activity near perihelion, which likely persists out to aphelion. Near perihelion the comet nucleus was surrounded by a large halo of water-ice grains that contributed significantly to the total water production.
  •  
3.
  • Biver, N., et al. (författare)
  • Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 589, s. Art. no. A78-
  • Tidskriftsartikel (refereegranskat)abstract
    • The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30 m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January-3 February 2015. We detected 22 molecules and several isotopologues. The (H2O)-O-16 and (H2O)-O-18 production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of similar to 25%. The inferred isotope ratios in comet Lovejoy are O-16/O-18 = 499 +/- 24 and D/H = 1.4 +/- 0.4 x 10(-4) in water, S-32/S-34 = 24.7 +/- 3.5 in CS, all compatible with terrestrial values. The ratio C-12/C-13 = 109 +/- 14 in HCN is marginally higher than terrestrial and N-14/N-15 = 145 +/- 12 in HCN is half the Earth ratio. Several upper limits for D/H or C-12/C-13 in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.
  •  
4.
  • Biver, N., et al. (författare)
  • Radio observations of Comet 9P/Tempel 1 before and after Deep Impact
  • 2007
  • Ingår i: Icarus. - : Elsevier BV. - 1090-2643 .- 0019-1035. ; 191:2, s. 494-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s -1 . Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H 2 O with Odin from June to August 2005. The peak of outgassing was found to be around 1 × 10 28   molec. s -1 between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH 3 OH and H 2 S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73 ± 0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the "natural" outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH 3 OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H 2 O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈ 5000 ± 2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas. © 2006 Elsevier Inc. All rights reserved.
  •  
5.
  • Biver, N., et al. (författare)
  • Radio observations of Comet 9P/Tempel 1 before and after Deep Impact
  • 2007
  • Ingår i: Icarus. - : Elsevier BV. - 1090-2643 .- 0019-1035. ; 187:1, s. 253-271
  • Tidskriftsartikel (refereegranskat)abstract
    • Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s -1 . Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H 2 O with Odin from June to August 2005. The peak of outgassing was found to be around 1 × 10 28   molec. s -1 between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH 3 OH and H 2 S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73 ± 0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the "natural" outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH 3 OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H 2 O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈ 5000 ± 2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas. © 2006 Elsevier Inc. All rights reserved.
  •  
6.
  • Crovisier, J., et al. (författare)
  • The chemical composition of 9P/tempel 1 from radio observations
  • 2009
  • Ingår i: ESO Astrophysics Symposia. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 1431-2433 .- 1611-6143. - 9783540769583 ; 2009, s. 243-248
  • Konferensbidrag (refereegranskat)abstract
    • In 2005, as part of a world-wide multi-wavelength investigation of comet 9P/Tempel 1 in support to the Deep Impact mission, we conducted radio spectroscopic observations with the Nançay radio telescope, the Odin satellite, the CSO 10-m and the IRAM 30-m telescopes. We report here our results concerning the chemical composition of the comet. The relative abundances of the detected species (H2O, CH3OH, H2S, HCN) or their upper limits (CO, H2CO, CS) are comparable to the mean values observed in other comets. No significant changes of the outgassing rates (except possibly for CH3OH) or of the molecular abundances were observed following the impact.
  •  
7.
  •  
8.
  • Schacht, Ryan, et al. (författare)
  • Adult sex ratios : causes of variation and implications for animal and human societies
  • 2022
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1
  • Forskningsöversikt (refereegranskat)abstract
    • Converging lines of inquiry from across the social and biological sciences target the adult sex ratio (ASR; the proportion of males in the adult population) as a fundamental population-level determinant of behavior. The ASR, which indicates the relative number of potential mates to competitors in a population, frames the selective arena for competition, mate choice, and social interactions. Here we review a growing literature, focusing on methodological developments that sharpen knowledge of the demographic variables underlying ASR variation, experiments that enhance understanding of the consequences of ASR imbalance across societies, and phylogenetic analyses that provide novel insights into social evolution. We additionally highlight areas where research advances are expected to make accelerating contributions across the social sciences, evolutionary biology, and biodiversity conservation. A detailed Review across animal and human societies provides insight on the causes and consequences of adult sex ratio skew.
  •  
9.
  • Tulet, Pierre, et al. (författare)
  • First results of the Piton de la Fournaise STRAP 2015 experiment: multidisciplinary tracking of a volcanic gas and aerosol plume
  • 2017
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 17:8, s. 5355-5378
  • Tidskriftsartikel (refereegranskat)abstract
    • The STRAP (Synergie Transdisciplinaire pour Répondre aux Aléas liés aux Panaches volcaniques) campaign was conducted in 2015 to investigate the volcanic plumes of Piton de La Fournaise (La Réunion, France). For the first time, measurements at the local (near the vent) and at the regional scales around the island were conducted. The STRAP 2015 campaign has become possible thanks to a strong cross-disciplinary collaboration between volcanologists and meteorologists. The main observations during four eruptive periods (85 days) are summarized. They include the estimates of SO2, CO2 and H2O emissions, the altitude of the plume at the vent and over different areas of La Réunion Island, the evolution of the SO2 concentration, the aerosol size distribution, and the aerosol extinction profile. A climatology of the volcanic plume dispersion is also reported. Simulations and measurements showed that the plume formed by weak eruption has a stronger interaction with the surface of the island. Strong SO2 and particles concentrations above 1000 ppb and 50 000 cm−3, respectively, are frequently measured over 20 km of distance from the Piton de la Fournaise. The measured aerosol size distribution shows the predominance of small particles in the volcanic plume. A particular emphasis is placed on the gas-particle conversion with several cases of strong nucleation of sulfuric acid observed within the plume and at the distal site of the Maïdo observatory. The STRAP 2015 campaign gave a unique set of multi-disciplinary data that can now be used by modellers to improve the numerical paramameterizations of the physical and chemical evolution of the volcanic plumes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy