SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boje Astrid 1991) "

Sökning: WFRF:(Boje Astrid 1991)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Levin, Sune, 1991, et al. (författare)
  • Nanofluidic Trapping of Faceted Colloidal Nanocrystals for Parallel Single-Particle Catalysis
  • 2022
  • Ingår i: Acs Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 16:9, s. 15206-15214
  • Tidskriftsartikel (refereegranskat)abstract
    • Catalyst activity can depend distinctly on nano -particle size and shape. Therefore, understanding the structure sensitivity of catalytic reactions is of fundamental and technical importance. Experiments with single-particle resolution, where ensemble-averaging is eliminated, are required to study it. Here, we implement the selective trapping of individual spherical, cubic, and octahedral colloidal Au nanocrystals in 100 parallel nanofluidic channels to determine their activity for fluorescein reduction by sodium borohydride using fluorescence microscopy. As the main result, we identify distinct structure sensitivity of the rate-limiting borohydride oxidation step originating from different edge site abundance on the three particle types, as confirmed by first -principles calculations. This advertises nanofluidic reactors for the study of structure-function correlations in catalysis and identifies nanoparticle shape as a key factor in borohydride-mediated catalytic reactions.
  •  
2.
  • Albinsson, David, 1990, et al. (författare)
  • Copper catalysis at operando conditions - bridging the gap between single nanoparticle probing and catalyst-bed-averaging
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In catalysis, nanoparticles enable chemical transformations and their structural and chemical fingerprints control activity. To develop understanding of such fingerprints, methods studying catalysts at realistic conditions have proven instrumental. Normally, these methods either probe the catalyst bed with low spatial resolution, thereby averaging out single particle characteristics, or probe an extremely small fraction only, thereby effectively ignoring most of the catalyst. Here, we bridge the gap between these two extremes by introducing highly multiplexed single particle plasmonic nanoimaging of model catalyst beds comprising 1000 nanoparticles, which are integrated in a nanoreactor platform that enables online mass spectroscopy activity measurements. Using the example of CO oxidation over Cu, we reveal how highly local spatial variations in catalyst state dynamics are responsible for contradicting information about catalyst active phase found in the literature, and identify that both surface and bulk oxidation state of a Cu nanoparticle catalyst dynamically mediate its activity.
  •  
3.
  • Boje, Astrid, 1991, et al. (författare)
  • First-principles-informed energy span and microkinetic analysis of ethanol catalytic conversion to 1,3-butadiene on MgO
  • 2021
  • Ingår i: Catalysis Science and Technology. - : Royal Society of Chemistry (RSC). - 2044-4753 .- 2044-4761. ; 11:20, s. 6682-6694
  • Tidskriftsartikel (refereegranskat)abstract
    • Kinetic modeling of single-step catalytic conversion of ethanol to 1,3-butadiene is necessary to inform accurate process design. This paper uses first-principles-informed energy span and microkinetic analysis to explore the reaction free energy landscapes and kinetic limitations of competing reaction pathways on a MgO (100) step-edge. Previous studies suggested mechanisms proceeding via both dehydrogenation and dehydration of ethanol, and highlighted sensitivity to conditions and catalyst composition. Here, we use the energy span concept to characterize the theoretical maximum turnover and degree of turnover frequency control for states in each reaction pathway, finding the dehydration route to be less active for 1,3-butadiene, and suggesting rate-determining states in the dehydrogenation, dehydration, and condensation steps. The influence of temperature on the relative rate contribution of each state is quantified and explained through the varying temperature sensitivity of the free energy landscape. A microkinetic model is developed to explore competition between pathways, interaction with gas-phase species, and surface coverage limitations. This suggests that the turnover may be significantly lower than predicted solely based on energetics. Turnover frequency determining states found to have high surface coverage include adsorbed ethanol and two longer, oxygenated hydrocarbons. The combined energy span and microkinetic analysis permits investigation of a complex system from two perspectives and helps elucidate conflicting observations of rate determining steps and product distribution by considering both energetic and kinetic limitations. The impact of uncertainty in the energy landscape is quantified using a correlated error model. While the range of predictions is large, the average performance and trends are similar.
  •  
4.
  • Engedahl, Unni, 1990, et al. (författare)
  • Complete Reaction Cycle for Methane-to-Methanol Conversion over Cu-SSZ-13: First-Principles Calculations and Microkinetic Modeling
  • 2021
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 125:27, s. 14681-14688
  • Tidskriftsartikel (refereegranskat)abstract
    • The steadily increasing consumption of natural gas imposes a need to facilitate the handling and distribution of the fuel, which presently is compressed or condensed. Alternatively, reduced volatility and increased tractability are achieved by converting the chemical energy of the main component, methane, into liquid methanol. Previous studies have explored direct methane-to-methanol conversion, but suitable catalysts have not yet been identified. Here, the complete reaction cycle for methane-to-methanol conversion over the Cu-SSZ-13 system is studied using density functional theory. The first step in the reaction cycle is the migration of Cu species along the zeolite framework forming the Cu pair, which is necessary for the adsorption of O2. Methane conversion occurs over the CuOOCu and CuOCu sites, consecutively, after which the system is returned to its initial structure with two separate Cu ions. A density functional theory-based kinetic model shows high activity when water is included in the reaction mechanism, for example, even at very low partial pressures of water, the kinetic model results in a turnover frequency of ∼1 at 450 K. The apparent activation energy from the kinetic model (∼1.1 eV) is close to recent measurements. However, experimental studies always observe very small amounts of methanol compared to formation of more energetically preferred products, for example, CO2. This low selectivity to methanol is not described by the current reaction mechanism as it does not consider formation of other species; however, the results suggest that selectivity, rather than inherent kinetic limitations, is an important target for improving methanol yields from humid systems. Moreover, a closed reaction cycle for the partial oxidation of methane has long been sought, and in achieving this over the Cu-SSZ-13, this study contributes one more step toward identifying a suitable catalyst for direct methane-to-methanol conversion.
  •  
5.
  • Engedahl, Unni, 1990, et al. (författare)
  • Investigating the Composition of the Metal Dimer Site in Chabazite for Direct Methane-to-Methanol Conversion
  • 2024
  • Ingår i: Journal of Physical Chemistry C. - 1932-7447 .- 1932-7455. ; 128:9, s. 3641-3651
  • Tidskriftsartikel (refereegranskat)abstract
    • Methanol is a liquid energy carrier that has the potential to reduce the use of fossil fuels. Industrial production of methanol is currently a multistep high-temperature/high-pressure synthesis route. Direct conversion of methane to methanol under low-temperature and low-pressure conditions is an interesting but challenging alternative, which presently lacks suitable catalysts. Here, the complete reaction cycle for direct methane-to-methanol conversion over transition-metal dimers in the chabazite zeolite is studied by using density functional theory calculations and microkinetic modeling. In particular, a reaction mechanism previously identified for the Cu2 dimer is explored under dry and wet conditions for dimers composed of Ag, Au, Pd, Ni, Co, Fe, and Zn and the bimetallic dimers AuCu, PdCu, and AuPd. The density-functional-theory-based microkinetic modeling shows that Cu2, AuPd, and PdCu dimers have reasonable turnover frequencies under technologically relevant conditions. The adsorption energy of atomic oxygen is identified as a descriptor for the reaction landscape as it correlates with the adsorption and transition-state energies of the other reaction intermediates. Using the established scaling relations, a volcano plot of the rate is generated with its apex close to the Cu2, AuPd, and PdCu dimers.
  •  
6.
  • Kjaer Jepsen, Philip, 1995, et al. (författare)
  • Wurster fluidised-bed coating: Coarse-graining technique within CFD-DEM in conjunction with heat and mass transfer
  • 2024
  • Ingår i: Powder Technology. - 1873-328X .- 0032-5910. ; 443
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we use a combined CFD-Discrete Element Method to assess predictive capabilities and numerical implications of a coarse-graining technique in Wurster fluidised-bed coaters. We investigated both hydrodynamics and heat and mass transfer and conducted simulations of a full three-phase system for the original and three coarse-grained systems, analysing velocity distributions, macroscopic solid stresses, moisture content and phase temperatures. We achieved a logarithmic simulation speed-up by aggregating up to 64 original particles into each coarse grain. This was accomplished while maintaining fidelity to the original CFD-DEM system in terms of reproducing with high accuracy macroscopic granular flow properties in different regions of a coater (drying, tube and bed regions). By integrating a liquid spray and humid air, we demonstrated that the phase temperatures were accurately predicted within the coarse-grained system, with a high capability of delivering liquid spray distributions with the same uniformity and drying. We also give arguments for choosing a certain degree of coarse-graining as a compromise between a desired reduction of computational costs and a trustworthy reproduction of granular-flow physics encountered in different regions of a Wurster bed. Our findings pave the way to using CFD-DEM to industrially-scaled Wurster-bed systems, which is currently unfeasible due to prohibitive computational costs.
  •  
7.
  • Tiburski, Christopher, 1988, et al. (författare)
  • Light-Off in Plasmon-Mediated Photocatalysis
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851. ; 15:7, s. 11535-11542
  • Tidskriftsartikel (refereegranskat)abstract
    • In plasmon-mediated photocatalysis it is of critical importance to differentiate light-induced catalytic reaction rate enhancement channels, which include near-field effects, direct hot carrier injection, and photothermal catalyst heating. In particular, the discrimination of photothermal and hot electron channels is experimentally challenging, and their role is under keen debate. Here we demonstrate using the example of CO oxidation over nanofabricated neat Pd and Au50Pd50 alloy catalysts, how photothermal rate enhancement differs by up to 3 orders of magnitude for the same photon flux, and how this effect is controlled solely by the position of catalyst operation along the light-off curve measured in the dark. This highlights that small fluctuations in reactor temperature or temperature gradients across a sample may dramatically impact global and local photothermal rate enhancement, respectively, and thus control both the balance between different rate enhancement mechanisms and the way strategies to efficiently distinguish between them should be devised.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy