SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bolger Ann F) "

Sökning: WFRF:(Bolger Ann F)

  • Resultat 1-10 av 53
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bissell, Malenka M., et al. (författare)
  • 4D Flow cardiovascular magnetic resonance consensus statement : 2023 update
  • 2023
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BMC. - 1097-6647 .- 1532-429X. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.
  •  
2.
  • Bolger, Ann F (författare)
  • Preventing Endocarditis No Rest for the Worrier
  • 2018
  • Ingår i: Journal of the American College of Cardiology. - : ELSEVIER SCIENCE INC. - 0735-1097 .- 1558-3597. ; 72:20, s. 2455-2456
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • n/a
  •  
3.
  •  
4.
  • Bolger, Ann F, 1957-, et al. (författare)
  • Transit of blood flow through thehuman left ventricle mapped by cardiovascular magnetic resonance
  • 2007
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : Informa UK Limited. - 1097-6647 .- 1532-429X. ; 9:5, s. 741-747
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND:The transit of blood through the beating heart is a basic aspect of cardiovascular physiology which remains incompletely studied. Quantification of the components of multidirectional flow in the normal left ventricle (LV) is lacking, making it difficult to put the changes observed with LV dysfunction and cardiac surgery into context.METHODS:Three dimensional, three directional, time resolved magnetic resonance phase-contrast velocity mapping was performed at 1.5 Tesla in 17 normal subjects, 6 female, aged 44+/-14 years (mean+/-SD). We visualized and measured the relative volumes of LV flow components and the diastolic changes in inflowing kinetic energy (KE). Of total diastolic inflow volume, 44+/-11% followed a direct, albeit curved route to systolic ejection (videos 1 and 2), in contrast to 11% in a subject with mildly dilated cardiomyopathy (DCM), who was included for preliminary comparison (video 3). In normals, 16+/-8% of the KE of inflow was conserved to the end of diastole, compared with 5% in the DCM patient. Blood following the direct route lost or transferred less of its KE during diastole than blood that was retained until the next beat (1.6+/-1.0 millijoules vs 8.2+/-1.9 millijoules, p<0.05); whereas, in the DCM patient, the reduction in KE of retained inflow was 18-fold greater than that of the blood tracing the direct route.CONCLUSION:Multidimensional flow mapping can measure the paths, compartmentalization and kinetic energy changes of blood flowing into the LV, demonstrating differences of KE loss between compartments, and potentially between the flows in normal and dilated left ventricles.
  •  
5.
  •  
6.
  • Bäck, Sophia, et al. (författare)
  • Assessment of transmitral and left atrial appendage flow rate from cardiac 4D-CT
  • 2023
  • Ingår i: Communications Medicine. - : Springer Nature. - 2730-664X. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Plain language summaryAssessing the blood flow inside the heart is important in diagnosis and treatment of various cardiovascular diseases, such as atrial fibrillation or heart failure. We developed a method to accurately track the motion of the heart walls over the course of a heartbeat in three-dimensional Computed Tomography (CT) images. Based on the motion, we calculated the amount of blood passing through the mitral valve and the left atrial appendage orifice, which are markers used in the diagnostic of heart failure and assessment of stroke risk in atrial fibrillation. The results agreed well with measurements from 4D flow MRI, an imaging technique that measures blood velocities. Our method could broaden the use of CT and make additional exams redundant. It can even be used to calculate the blood flow inside the heart. BackgroundCardiac time-resolved CT (4D-CT) acquisitions provide high quality anatomical images of the heart. However, some cardiac diseases require assessment of blood flow in the heart. Diastolic dysfunction, for instance, is diagnosed by measuring the flow through the mitral valve (MV), while in atrial fibrillation, the flow through the left atrial appendage (LAA) indicates the risk for thrombus formation. Accurate validated techniques to extract this information from 4D-CT have been lacking, however.MethodsTo measure the flow rate though the MV and the LAA from 4D-CT, we developed a motion tracking algorithm that performs a nonrigid deformation of the surface separating the blood pool from the myocardium. To improve the tracking of the LAA, this region was deformed separately from the left atrium and left ventricle. We compared the CT based flow with 4D flow and short axis MRI data from the same individual in 9 patients.ResultsFor the mitral valve flow, good agreement was found for the time span between the early and late diastolic peak flow (bias: <0.1 s). The ventricular stroke volume is similar compared to short-axis MRI (bias 3 ml). There are larger differences in the diastolic peak flow rates, with a larger bias for the early flow rate than the late flow rate. The peak LAA outflow rate measured with both modalities matches well (bias: -6 ml/s).ConclusionsOverall, the developed algorithm provides accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA compared to 4D flow MRI. Back et al. describe a motion tracking algorithm to measure the flow rate through the mitral valve (MV) and the left atrial appendage (LAA) from 4D-CT data. The developed algorithm provided accurate tracking of dynamic cardiac geometries resulting in similar flow rates at the MV and LAA to those measured by 4D flow MRI.
  •  
7.
  • Casas Garcia, Belén, et al. (författare)
  • Bridging the gap between measurements and modelling : a cardiovascular functional avatar
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Lumped parameter models of the cardiovascular system have the potential to assist researchers and clinicians to better understand cardiovascular function. The value of such models increases when they are subject specific. However, most approaches to personalize lumped parameter models have thus far required invasive measurements or fall short of being subject specific due to a lack of the necessary clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the systemic circulation using exclusively non-invasive measurements. The personalized model is created using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and estimate hemodynamic variables that cannot be assessed directly from clinical measurements.
  •  
8.
  • Casas Garcia, Belén, et al. (författare)
  • Non-invasive Assessment of Systolic and Diastolic Cardiac Function During Rest and Stress Conditions Using an Integrated Image-Modeling Approach
  • 2018
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The possibility of non-invasively assessing load-independent parameters characterizing cardiac function is of high clinical value. Typically, these parameters are assessed during resting conditions. However, for diagnostic purposes, the parameter behavior across a physiologically relevant range of heart rate and loads is more relevant than the isolated measurements performed at rest. This study sought to evaluate changes in non-invasive estimations of load-independent parameters of left-ventricular contraction and relaxation patterns at rest and during dobutamine stress. Methods: We applied a previously developed approach that combines non-invasive measurements with a physiologically-based, reduced-order model of the cardiovascular system to provide subject-specific estimates of parameters characterizing left ventricular function. In this model, the contractile state of the heart at each time point along the cardiac cycle is modeled using a time-varying elastance curve. Non-invasive data, including four-dimensional magnetic resonance imaging (4D Flow MRI) measurements, were acquired in nine subjects without a known heart disease at rest and during dobutamine stress. For each of the study subjects, we constructed two personalized models corresponding to the resting and the stress state. Results: Applying the modeling framework, we identified significant increases in the left ventricular contraction rate constant [from 1.5 +/- 0.3 to 2 +/- 0.5 (p = 0.038)] and relaxation constant [from 37.2 +/- 6.9 to 46.1 +/- 12 (p = 0.028)]. In addition, we found a significant decrease in the elastance diastolic time constant from 0.4 +/- 0.04 s to 0.3 +/- 0.03 s = 0.008). Conclusions: The integrated image-modeling approach allows the assessment of cardiovascular function given as model-based parameters. The agreement between the estimated parameter values and previously reported effects of dobutamine demonstrates the potential of the approach to assess advanced metrics of pathophysiology that are otherwise difficult to obtain non-invasively in clinical practice.
  •  
9.
  •  
10.
  • Dyverfeldt, Petter, et al. (författare)
  • 4D flow cardiovascular magnetic resonance consensus statement
  • 2015
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BioMed Central / Informa Healthcare. - 1097-6647 .- 1532-429X. ; 17:72
  • Forskningsöversikt (refereegranskat)abstract
    • Pulsatile blood flow through the cavities of the heart and great vessels is time-varying and multidirectional. Access to all regions, phases and directions of cardiovascular flows has formerly been limited. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has enabled more comprehensive access to such flows, with typical spatial resolution of 1.5x1.5x1.5 - 3x3x3 mm(3), typical temporal resolution of 30-40 ms, and acquisition times in the order of 5 to 25 min. This consensus paper is the work of physicists, physicians and biomedical engineers, active in the development and implementation of 4D Flow CMR, who have repeatedly met to share experience and ideas. The paper aims to assist understanding of acquisition and analysis methods, and their potential clinical applications with a focus on the heart and greater vessels. We describe that 4D Flow CMR can be clinically advantageous because placement of a single acquisition volume is straightforward and enables flow through any plane across it to be calculated retrospectively and with good accuracy. We also specify research and development goals that have yet to be satisfactorily achieved. Derived flow parameters, generally needing further development or validation for clinical use, include measurements of wall shear stress, pressure difference, turbulent kinetic energy, and intracardiac flow components. The dependence of measurement accuracy on acquisition parameters is considered, as are the uses of different visualization strategies for appropriate representation of time-varying multidirectional flow fields. Finally, we offer suggestions for more consistent, user-friendly implementation of 4D Flow CMR acquisition and data handling with a view to multicenter studies and more widespread adoption of the approach in routine clinical investigations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 53
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (16)
annan publikation (4)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (32)
övrigt vetenskapligt/konstnärligt (21)
Författare/redaktör
Bolger, Ann F (34)
Ebbers, Tino (30)
Engvall, Jan, 1953- (17)
Carlhäll, Carljohan (17)
Dyverfeldt, Petter (15)
Engvall, Jan (12)
visa fler...
Eriksson, Jonatan (12)
Karlsson, Matts, 196 ... (9)
Karlsson, Matts (8)
Sigfridsson, Andreas (7)
Fyrenius, Anna, 1969 ... (7)
Wigström, Lars (6)
Wranne, Bengt, 1940- (6)
Carlhäll, Carl-Johan (4)
Franzén, Stefan (3)
Alehagen, Urban (2)
Persson, Anders (2)
Heiberg, Einar (2)
Carlhäll, Carl-Johan ... (2)
Cedersund, Gunnar (2)
Wranne, Bengt (2)
Fyrenius, Anna (2)
Wieben, Oliver (2)
Barker, Alex J. (2)
Frydrychowicz, Alex (2)
Johansson, P. (1)
Öhman, Peter (1)
Carlsson, Marcus (1)
Boano, Gabriella (1)
Ask, Per (1)
Nylander, Eva (1)
Dasu, Alexandru, 197 ... (1)
Raimondi, Francesca (1)
Lundberg, Magnus (1)
Lantz, Jonas (1)
Loyd, Dan (1)
Cedersund, Gunnar, 1 ... (1)
Arheden, H. (1)
Töger, Johannes (1)
Myerson, Saul (1)
Neubauer, Stefan (1)
Kilner, Philip J (1)
Eidenvall, Lars (1)
Bissell, Malenka M. (1)
Ait Ali, Lamia (1)
Allen, Bradley D. (1)
Burris, Nicholas (1)
Collins, Jeremy D. (1)
Francois, Christophe ... (1)
Garg, Pankaj (1)
visa färre...
Lärosäte
Linköpings universitet (53)
Lunds universitet (2)
Uppsala universitet (1)
Språk
Engelska (52)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Teknik (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy