SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bolger Michael B.) "

Sökning: WFRF:(Bolger Michael B.)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Phillips, Helen R. P., et al. (författare)
  • Global distribution of earthworm diversity
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6464, s. 480-
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
  •  
3.
  • Potapov, Anton M., et al. (författare)
  • Global fine-resolution data on springtail abundance and community structure
  • 2024
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
  •  
4.
  • Bissell, Malenka M., et al. (författare)
  • 4D Flow cardiovascular magnetic resonance consensus statement : 2023 update
  • 2023
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BMC. - 1097-6647 .- 1532-429X. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.
  •  
5.
  • Kostewicz, Edmund S., et al. (författare)
  • PBPK models for the prediction of in vivo performance of oral dosage forms
  • 2014
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 57:SI, s. 300-321
  • Forskningsöversikt (refereegranskat)abstract
    • Drug absorption from the gastrointestinal (GI) tract is a highly complex process dependent upon numerous factors including the physicochemical properties of the drug, characteristics of the formulation and interplay with the underlying physiological properties of the GI tract. The ability to accurately predict oral drug absorption during drug product development is becoming more relevant given the current challenges facing the pharmaceutical industry. Physiologically-based pharmacokinetic (PBPK) modeling provides an approach that enables the plasma concentration time profiles to be predicted from preclinical in vitro and in vivo data and can thus provide a valuable resource to support decisions at various stages of the drug development process. Whilst there have been quite a few successes with PBPK models identifying key issues in the development of new drugs in vivo, there are still many aspects that need to be addressed in order to maximize the utility of the PBPK models to predict drug absorption, including improving our understanding of conditions in the lower small intestine and colon, taking the influence of disease on GI physiology into account and further exploring the reasons behind population variability. Importantly, there is also a need to create more appropriate in vitro models for testing dosage form performance and to streamline data input from these into the PBPK models. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the current status of PBPK models available. The current challenges in PBPK set-ups for oral drug absorption including the composition of GI luminal contents, transit and hydrodynamics, permeability and intestinal wall metabolism are discussed in detail. Further, the challenges regarding the appropriate integration of results from in vitro models, such as consideration of appropriate integration! estimation of solubility and the complexity of the in vitro release and precipitation data, are also highlighted as important steps to advancing the application of PBPK models in drug development. It is expected that the "innovative" integration of in vitro data from more appropriate in vitro models and the enhancement of the GI physiology component of PBPK models, arising from the OrBiTo project, will lead to a significant enhancement in the ability of PBPK models to successfully predict oral drug absorption and advance their role in preclinical and clinical development, as well as for regulatory applications.
  •  
6.
  • Potapov, Anton M., et al. (författare)
  • Globally invariant metabolism but density-diversity mismatch in springtails
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
  •  
7.
  • Ahmad, Amais, et al. (författare)
  • IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4 : Prediction accuracy and software comparisons with improved data and modelling strategies
  • 2020
  • Ingår i: European journal of pharmaceutics and biopharmaceutics. - : Elsevier BV. - 0939-6411 .- 1873-3441. ; 156, s. 50-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption is much needed. Current status of predictive performance, within the confinement of commonly available in vitro data on drugs and formulations alongside systems information, were tested using 3 PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and GastroPlusTM (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project.Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database to be part of the investigation based on a priori set criteria on availability of minimum necessary information to allow modelling exercise. The set entailed over 200 human clinical studies with over 700 study arms. These were simulated using input parameters which had been harmonised by a panel of experts across different software packages prior to conduct of any simulation. Overall prediction performance and software packages comparison were evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters.On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. Variability in FEs of these PK parameters was relatively high with AAFE values ranging from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs showing an AFE > 1. When compared across different formulations and routes of administration, AUC0-tlast for oral controlled release and i.v. administration were better predicted than that for oral immediate release formulations. Average predictive performance did not clearly differ between software packages but some APIs showed a high level of variability in predictive performance across different software packages. This variability could be related to several factors such as compound specific properties, the quality and availability of information, and errors in scaling from in vitro and preclinical in vivo data to human in vivo behaviour which will be explored further. Results were compared with previous similar exercise when the input data selection was carried by the modeller rather than a panel of experts on each in vitro test. Overall, average predictive performance was increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in case of previous exercise.
  •  
8.
  • Darwich, Adam S., et al. (författare)
  • IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 3 : Identifying gaps in system parameters by analysing In Silico performance across different compound classes
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 626-642
  • Tidskriftsartikel (refereegranskat)abstract
    • Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp (R) Simulator, and GastroPlus (TM)) were evaluated as part of the Innovative Medicine Initiative Oral Biopharmaceutics Tools project (OrBiTo) during a blinded "bottom-up" anticipation of human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics parameters, it was found that oral bioavailability (F-oral) was underpredicted for compounds with low permeability, suggesting improper estimates of intestinal surface area, colonic absorption and/or lack of intestinal transporter information. Foralwas also underpredicted for acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of information on intestinal transporters, or underestimation of solubilisation of weak acids due to less than optimal intestinal model pH settings or underestimation of bile micelle contribution. F-oral was overpredicted for weak bases, suggesting inadequate models for precipitation or lack of in vitro precipitation information to build informed models. Relative bioavailability was underpredicted for both high logP compounds as well as poorly water-soluble compounds, suggesting inadequate models for solubility/dissolution, underperforming bile enhancement models and/or lack of biorelevant solubility measurements. These results indicate areas for improvement in model software, modelling approaches, and generation of applicable input data. However, caution is required when interpreting the impact of drug-specific properties in this exercise, as the availability of input parameters was heterogeneous and highly variable, and the modellers generally used the data "as is" in this blinded bottom-up prediction approach.
  •  
9.
  • Margolskee, Alison, et al. (författare)
  • IMI - oral biopharmaceutics tools project - evaluation of bottom-up PBPK prediction success part 1 : Characterisation of the OrBiTo database of compounds
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 598-609
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting oral bioavailability (F-oral) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models. A large-scale evaluation of PBPK models may be considered the first step. Here we characterise the OrBiTo active pharmaceutical ingredient (API) database for use in a large-scale simulation study. The OrBiTo database comprised 83 APIs and 1475 study arms. The database displayed a median logP of 3.60 (2.40-4.58), human blood-to-plasma ratio of 0.62 (0.57-0.71), and fraction unbound in plasma of 0.05 (0.01-0.17). The database mainly consisted of basic compounds (48.19%) and Biopharmaceutics Classification System class II compounds (55.81%). Median human intravenous clearance was 16.9 L/h (interquartile range: 11.6-43.6 L/h; n = 23), volume of distribution was 80.8 L (54.5-239 L; n = 23). The majority of oral formulations were immediate release (IR: 87.6%). Human Foral displayed a median of 0.415 (0.203-0.724; n = 22) for IR formulations. The OrBiTo database was found to be largely representative of previously published datasets. 43 of the APIs were found to satisfy the minimum inclusion criteria for the simulation exercise, and many of these have significant gaps of other key parameters, which could potentially impact the interpretability of the simulation outcome. However, the OrBiTo simulation exercise represents a unique opportunity to perform a large-scale evaluation of the PBPK approach to predicting oral biopharmaceutics.
  •  
10.
  • Margolskee, Alison, et al. (författare)
  • IMI - Oral biopharmaceutics tools project - Evaluation of bottom-up PBPK prediction success part 2 : An introduction to the simulation exercise and overview of results
  • 2017
  • Ingår i: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 96, s. 610-625
  • Tidskriftsartikel (refereegranskat)abstract
    • Orally administered drugs are subject to a number of barriers impacting bioavailability (F-oral), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp (R), and GastroPlus (TM)) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters. Since the availability of input parameters was heterogeneous and highly variable, caution is required when interpreting the results of this exercise. Additionally, this prospective simulation exercise may not be representative of prospective modelling in industry, as API information was limited to sparse details. 43 active pharmaceutical ingredients (APIs) from the OrBiTo database were selected for the exercise. Over 4000 simulation output files were generated, representing over 2550 study arm-institution-software combinations and approximately 600 human clinical study arms simulated with overlap. 84% of the simulated study arms represented administration of immediate release formulations, 11% prolonged or delayed release, and 5% intravenous (i.v.). Higher percentages of i.v. predicted area under the curve (AUC) were within two-fold of observed (52.9%) compared to per oral (p.o.) (37.2%), however, F-oral and relative AUC (F-rel) between p.o. formulations and solutions were generally well predicted (64.7% and 75.0%). Predictive performance declined progressing from i.v. to solution and immediate release tablet, indicating the compounding error with each layer of complexity. Overall performance was comparable to previous large-scale evaluations. A general overprediction of AUC was observed with average fold error (AFE) of 1.56 over all simulations. AFE ranged from 0.0361 to 64.0 across the 43 APIs, with 25 showing overpredictions. Discrepancies between software packages were observed for a few APIs, the largest being 606, 171, and 81.7-fold differences in AFE between SimCYP and GI-Sim, however average performance was relatively consistent across the three software platforms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11
Typ av publikation
tidskriftsartikel (8)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (10)
Författare/redaktör
Tannergren, Christer (6)
Bolger, Michael B. (6)
Abrahamsson, Bertil (5)
Pepin, Xavier (5)
Aarons, Leon (5)
Lloyd, Richard (5)
visa fler...
Rostami-Hodjegan, Am ... (5)
Darwich, Adam S. (4)
Lennernäs, Hans (4)
Carlert, Sara (4)
Murphy, Donal (4)
Pathak, Shriram M. (4)
Bevernage, Jan (4)
Nguyen, Mai Anh (4)
Karlsson, Eva (3)
Laru, Johanna (3)
Brown, Jonathan (3)
Nicolas, Olivier (3)
Xu, Christine (3)
Heimbach, Tycho (3)
He, Handan (3)
Wu, Fan (3)
Mullin, James M. (3)
Korjamo, Timo (3)
Pappinen, Sari (3)
Tuunainen, Johanna (3)
Modi, Sweta (3)
Rashid, Muhammad Imt ... (3)
Langguth, Peter (3)
Dressman, Jennifer (3)
McAllister, Mark (3)
Holmstrup, Martin (3)
Ahlbäck Widenfalk, L ... (2)
Hilgendorf, Constanz ... (2)
Flanagan, Talia (2)
Jamei, Masoud (2)
Beilles, Stephane (2)
Ollier, Celine (2)
Nguyen-Trung, Anh-Th ... (2)
Tistaert, Christophe (2)
Alatalo, Juha M. (2)
Čuchta, Peter (2)
Greve, Michelle (2)
Berg, Matty P. (2)
Jochum, Malte (2)
Chen, Ting-Wen (2)
Weitschies, Werner (2)
Kostewicz, Edmund (2)
Sun, Xin (2)
Scheu, Stefan (2)
visa färre...
Lärosäte
Uppsala universitet (5)
Umeå universitet (3)
Sveriges Lantbruksuniversitet (3)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Lunds universitet (1)
visa fler...
Karolinska Institutet (1)
visa färre...
Språk
Engelska (11)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Naturvetenskap (3)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy