SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Bolund Lars) "

Search: WFRF:(Bolund Lars)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Wang, Fei, et al. (author)
  • Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level
  • 2022
  • In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Pigs are valuable large animal models for biomedical and genetic research, but insights into the tissue- and cell-type-specific transcriptome and heterogeneity remain limited. By leveraging single-cell RNA sequencing, we generate a multiple-organ single-cell transcriptomic map containing over 200,000 pig cells from 20 tissues/organs. We comprehensively characterize the heterogeneity of cells in tissues and identify 234 cell clusters, representing 58 major cell types. In-depth integrative analysis of endothelial cells reveals a high degree of heterogeneity. We identify several functionally distinct endothelial cell phenotypes, including an endothelial to mesenchymal transition subtype in adipose tissues. Intercellular communication analysis predicts tissue- and cell type-specific crosstalk between endothelial cells and other cell types through the VEGF, PDGF, TGF-beta, and BMP pathways. Regulon analysis of single-cell transcriptome of microglia in pig and 12 other species further identifies MEF2C as an evolutionally conserved regulon in the microglia. Our work describes the landscape of single-cell transcriptomes within diverse pig organs and identifies the heterogeneity of endothelial cells and evolutionally conserved regulon in microglia.
  •  
2.
  •  
3.
  •  
4.
  • Buckley, Patrick G., et al. (author)
  • Identification of genetic aberrations on chromosome 22 outside the NF2 locus in schwannomatosis and neurofibromatosis type 2
  • 2005
  • In: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 26:6, s. 540-9
  • Journal article (peer-reviewed)abstract
    • Schwannomatosis is characterized by multiple peripheral and cranial nerve schwannomas that occur in the absence of bilateral 8th cranial nerve schwannomas. The latter is the main diagnostic criterion of neurofibromatosis type 2 (NF2), which is a related but distinct disorder. The genetic factors underlying the differences between schwannomatosis and NF2 are poorly understood, although available evidence implicates chromosome 22 as the primary location of the gene(s) of interest. To investigate this, we comprehensively profiled the DNA copy number in samples from sporadic and familial schwannomatosis, NF2, and a large cohort of normal controls. Using a tiling-path chromosome 22 genomic array, we identified two candidate regions of copy number variation, which were further characterized by a PCR-based array with higher resolution. The latter approach allows the detection of minute alterations in total genomic DNA, with as little as 1.5 kb per measurement point of nonredundant sequence on the array. In DNA derived from peripheral blood from a schwannomatosis patient and a sporadic schwannoma sample, we detected rearrangements of the immunoglobulin lambda (IGL) locus, which is unlikely to be due to a B-cell specific somatic recombination of IGL. Analysis of normal controls indicated that these IGL rearrangements were restricted to schwannomatosis/schwannoma samples. In the second candidate region spanning GSTT1 and CABIN1 genes, we observed a frequent copy number polymorphism at the GSTT1 locus. We further describe missense mutations in the CABIN1 gene that are specific to samples from schwannomatosis and NF2 and make this gene a plausible candidate for contributing to the pathogenesis of these disorders.
  •  
5.
  • Huang, Jinrong, et al. (author)
  • A porcine brain-wide RNA editing landscape
  • 2021
  • In: Communications Biology. - : Springer Nature. - 2399-3642. ; 4:1
  • Journal article (peer-reviewed)abstract
    • Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is an essential post-transcriptional modification. Although hundreds of thousands of RNA editing sites have been reported in mammals, brain-wide analysis of the RNA editing in the mammalian brain remains rare. Here, a genome-wide RNA-editing investigation is performed in 119 samples, representing 30 anatomically defined subregions in the pig brain. We identify a total of 682,037 A-to-I RNA editing sites of which 97% are not identified before. Within the pig brain, cerebellum and olfactory bulb are regions with most edited transcripts. The editing level of sites residing in protein-coding regions are similar across brain regions, whereas region-distinct editing is observed in repetitive sequences. Highly edited conserved recoding events in pig and human brain are found in neurotransmitter receptors, demonstrating the evolutionary importance of RNA editing in neurotransmission functions. Although potential data biases caused by age, sex or health status are not considered, this study provides a rich resource to better understand the evolutionary importance of post-transcriptional RNA editing. Huang et al performed a genome-wide RNA editing investigation in the porcine brain in which they found over 680,000 A-to-I RNA editing sites. They identified conserved recoding events between pig and human brains thus providing an extensive resource to aid our understanding of the evolutionary importance of post-transcriptional RNA editing.
  •  
6.
  • Karlsson, Max, et al. (author)
  • Genome-wide annotation of protein-coding genes in pig
  • 2022
  • In: BMC Biology. - : Springer Nature. - 1741-7007. ; 20:1
  • Journal article (peer-reviewed)abstract
    • Background: There is a need for functional genome-wide annotation of the protein-coding genes to get a deeper understanding of mammalian biology. Here, a new annotation strategy is introduced based on dimensionality reduction and density-based clustering of whole-body co-expression patterns. This strategy has been used to explore the gene expression landscape in pig, and we present a whole-body map of all protein-coding genes in all major pig tissues and organs. Results: An open-access pig expression map (www.rnaatlas.org ) is presented based on the expression of 350 samples across 98 well-defined pig tissues divided into 44 tissue groups. A new UMAP-based classification scheme is introduced, in which all protein-coding genes are stratified into tissue expression clusters based on body-wide expression profiles. The distribution and tissue specificity of all 22,342 protein-coding pig genes are presented. Conclusions: Here, we present a new genome-wide annotation strategy based on dimensionality reduction and density-based clustering. A genome-wide resource of the transcriptome map across all major tissues and organs in pig is presented, and the data is available as an open-access resource (www.rnaatlas.org), including a comparison to the expression of human orthologs.
  •  
7.
  • Li, Jian, et al. (author)
  • Array Comparative Genomic Hybridization of Keratoacanthomas and Squamous Cell Carcinomas: Different Patterns of Genetic Aberrations Suggest Two Distinct Entities
  • 2012
  • In: Journal of Investigative Dermatology. - : Elsevier BV. - 1523-1747 .- 0022-202X. ; 132:8, s. 2060-2066
  • Journal article (peer-reviewed)abstract
    • Keratoacanthoma (KA) is a benign keratinocytic neoplasm that spontaneously regresses after 3-6 months and shares features with squamous cell carcinomas (SCCs). Furthermore, there are reports of KAs that have metastasized, invoking the question of whether KA is a variant of SCC (Hodak et al., 1993). To date, no reported criteria are sensitive enough to discriminate reliably between KA and SCC, and consequently there is a clinical need for discriminating markers. Our previous study analyzed 132 KAs and 29 SCCs and revealed significantly different regions of genomic aberrations using chromosomal comparative genomic hybridization (CGH). In the present study, we applied array CGH to investigate 98 KAs and 22 SCCs from the above samples. The result shows that all KAs and SCCs have some degree of genetic aberrations. The distribution of numbers of aberrant clones per sample differed significantly between KAs and SCCs (P<0.02), which also demonstrated recurrent aberrations that differed significantly (P<0.001), as illustrated by unsupervised cluster analysis. Classifiers for clinicopathological parameters of KAs were established based on t-test statistics and permutation tests. Tumor size, fibrosis, and inflammation, which are related to the developmental stages of KAs, showed significant (t-test, permutation test) associations with aberrations of selected genomic regions. This suggests chromosomal instability during the whole life cycle of KAs.
  •  
8.
  • Rollman, Ola, et al. (author)
  • Platelet derived growth factor (PDGF) responsive epidermis formed from human keratinocytes transduced with the PDGF beta receptor gene.
  • 2003
  • In: J Invest Dermatol. ; 120, s. 742-
  • Journal article (peer-reviewed)abstract
    • Platelet-derived growth factor is a major proliferative and migratory stimulus for connective tissue cells during the initiation of skin repair processes. In response to injury, locally produced platelet-derived growth factor is secreted by a diversity of cutaneous cell types whereas target activity is confined to cells of mesenchymal origin, e.g. dermal fibroblasts and smooth muscle cells. Although epidermal cells contribute to cutaneous platelet-derived growth factor activity by their ample capacity to secrete platelet-derived growth factor ligand, normal epidermal keratinocytes are not known to express any member of the platelet-derived growth factor receptor family. In order to study if epidermis may be genetically transformed to a platelet-derived growth factor sensitive compartment we aimed to introduce the gene encoding human platelet-derived growth factor receptor beta (PDGF beta R) into epidermal keratinocytes using a retrovirus-derived vector. Successful gene transfer to primary cells was confirmed by immunofluorescence staining, southern blotting, and ligand-induced receptor autophosphorylation. By culturing a mixture of PDGF beta R-transduced and unmodified keratinocytes at the air-liquid interface on devitalized dermis, we were able to establish a multilayered epithelium showing histologic similarities to that evolved from native keratinocytes or keratinocytes transduced with the reporter gene encoding enhanced green fluorescent protein. Receptor-modified epidermal tissue cultured for 6 days and examined by immunofluorescence microscopy was shown to contain PDGF beta R-expressing keratinocytes distributed in all layers of living epidermis. By continued tissue culture in serum-containing medium, the epidermis became increasingly cornified although receptor-positive cells were still observed within the viable basal compartment. Stimulation of PDGF beta R-transduced epidermis with recombinant platelet-derived growth factor BB had a mitogenic effect as reflected by an increased frequency of Ki-67 positive keratinocytes. The study demonstrates that transgene expression of human PDGF beta R can be achieved in epidermal keratinocytes by retroviral transduction, and that ligand activation of such gene-modified skin equivalent enhances cell proliferation. In perspective, viral PDGF beta R gene transfer to keratinocytes may be a useful approach in studies of receptor tyrosine kinase mediated skin repair and epithelialization.
  •  
9.
  • Semb, Gunvor, et al. (author)
  • A Scandcleft randomised trials of primary surgery for unilateral cleft lip and palate: 1. Planning and management.
  • 2017
  • In: Journal of Plastic Surgery and Hand Surgery. - : Taylor & Francis. - 2000-656X .- 2000-6764. ; 51:1, s. 2-13
  • Journal article (peer-reviewed)abstract
    • BACKGROUND AND AIMS: Longstanding uncertainty surrounds the selection of surgical protocols for the closure of unilateral cleft lip and palate, and randomised trials have only rarely been performed. This paper is an introduction to three randomised trials of primary surgery for children born with complete unilateral cleft lip and palate (UCLP). It presents the protocol developed for the trials in CONSORT format, and describes the management structure that was developed to achieve the long-term engagement and commitment required to complete the project.METHOD: Ten established national or regional cleft centres participated. Lip and soft palate closure at 3-4 months, and hard palate closure at 12 months served as a common method in each trial. Trial 1 compared this with hard palate closure at 36 months. Trial 2 compared it with lip closure at 3-4 months and hard and soft palate closure at 12 months. Trial 3 compared it with lip and hard palate closure at 3-4 months and soft palate closure at 12 months. The primary outcomes were speech and dentofacial development, with a series of perioperative and longer-term secondary outcomes.RESULTS: Recruitment of 448 infants took place over a 9-year period, with 99.8% subsequent retention at 5 years.CONCLUSION: The series of reports that follow this introductory paper include comparisons at age 5 of surgical outcomes, speech outcomes, measures of dentofacial development and appearance, and parental satisfaction. The outcomes recorded and the numbers analysed for each outcome and time point are described in the series.TRIAL REGISTRATION: ISRCTN29932826.
  •  
10.
  • Sjöstedt, Evelina, et al. (author)
  • An atlas of the protein-coding genes in the human, pig, and mouse brain
  • 2020
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 367:6482, s. 1090-
  • Journal article (peer-reviewed)abstract
    • The brain, with its diverse physiology and intricate cellular organization, is the most complex organ of the mammalian body. To expand our basic understanding of the neurobiology of the brain and its diseases, we performed a comprehensive molecular dissection of 10 major brain regions and multiple subregions using a variety of transcriptomics methods and antibody-based mapping. This analysis was carried out in the human, pig, and mouse brain to allow the identification of regional expression profiles, as well as to study similarities and differences in expression levels between the three species. The resulting data have been made available in an open-access Brain Atlas resource, part of the Human Protein Atlas, to allow exploration and comparison of the expression of individual protein-coding genes in various parts of the mammalian brain.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view