SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bonadonna Francesco) "

Sökning: WFRF:(Bonadonna Francesco)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barbaud, Annick, et al. (författare)
  • Allergies and COVID-19 vaccines : An ENDA/EAACI Position paper
  • 2022
  • Ingår i: Allergy. European Journal of Allergy and Clinical Immunology. - : John Wiley & Sons. - 0105-4538 .- 1398-9995. ; 77:8, s. 2292-2312
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Anaphylaxis, which is rare, has been reported after COVID-19 vaccination, but its management is not standardized.Method Members of the European Network for Drug Allergy and the European Academy of Allergy and Clinical Immunology interested in drug allergy participated in an online questionnaire on pre-vaccination screening and management of allergic reactions to COVID-19 vaccines, and literature was analysed.Results No death due to anaphylaxis to COVID-19 vaccines has been confirmed in scientific literature. Potential allergens, polyethylene glycol (PEG), polysorbate and tromethamine are excipients. The authors propose allergy evaluation of persons with the following histories: 1-anaphylaxis to injectable drug or vaccine containing PEG or derivatives; 2-anaphylaxis to oral/topical PEG containing products; 3-recurrent anaphylaxis of unknown cause; 4-suspected or confirmed allergy to any mRNA vaccine; and 5-confirmed allergy to PEG or derivatives. We recommend a prick-to-prick skin test with the left-over solution in the suspected vaccine vial to avoid waste. Prick test panel should include PEG 4000 or 3500, PEG 2000 and polysorbate 80. The value of in vitro test is arguable.Conclusions These recommendations will lead to a better knowledge of the management and mechanisms involved in anaphylaxis to COVID-19 vaccines and enable more people with history of allergy to be vaccinated.
  •  
2.
  • Blary, Constance, et al. (författare)
  • Detection of wind turbines rotary motion by birds : A matter of speed and contrast
  • 2023
  • Ingår i: Conservation Science and Practice. - 2578-4854. ; 5:10
  • Tidskriftsartikel (refereegranskat)abstract
    • To reduce bird collisions on wind turbines, Automatic Detection Systems have been developed to locate approaching birds and trigger turbines to slowdown to 2–3 rotations per minute (rpm). However, it is unknown whether birds can detect this reduced speed and avoid the turbine. We conducted an operant conditioning experiment on domestic doves (Streptopelia roseogrisea) and Harris's hawks (Parabuteo unicinctus) to assess their ability to discriminate between stationary and rotating miniature wind turbines, depending on the rotation speed and the contrast between the white blades and the background (only for doves for the latter). At high contrast, regardless of the speed tested, hawks were able to differentiate between the rotating and stationary turbines, while doves were not able to discriminate the slow-rotating turbine (3 rpm) from the stationary one. The discrimination threshold increased to 8 rpm for the doves when the contrast was reduced. Our results suggest that the residual wind turbine speed of 2–3 rpm may not be detected by all bird species under all environmental conditions. Increasing the contrast between wind turbines and their environment may improve the detection of low-speed rotation by some birds, otherwise, complete turbine shutdown should be recommended.
  •  
3.
  • Blary, Constance L.M., et al. (författare)
  • Low achromatic contrast sensitivity in birds : a common attribute shared by many phylogenetic orders
  • 2024
  • Ingår i: The Journal of experimental biology. - 1477-9145. ; 227:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Vision is an important sensory modality in birds, which can outperform other vertebrates in some visual abilities. However, sensitivity to achromatic contrasts - the ability to discern luminance difference between two objects or an object and its background - has been shown to be lower in birds compared with other vertebrates. We conducted a comparative study to evaluate the achromatic contrast sensitivity of 32 bird species from 12 orders using the optocollic reflex technique. We then performed an analysis to test for potential variability in contrast sensitivity depending on the corneal diameter to the axial length ratio, a proxy of the retinal image brightness. To account for potential influences of evolutionary relatedness, we included phylogeny in our analyses. We found a low achromatic contrast sensitivity for all avian species studied compared with other vertebrates (except small mammals), with high variability between species. This variability is partly related to phylogeny but appears to be independent of image brightness.
  •  
4.
  • Leclaire, Sarah, et al. (författare)
  • Odour-based discrimination of similarity at the major histocompatibility complex in birds
  • 2017
  • Ingår i: Proceedings of the Royal Society B: Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 284:1846
  • Tidskriftsartikel (refereegranskat)abstract
    • Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assessMHCsimilarity with potential partners, the ability of birds to assessMHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate withMHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity
  •  
5.
  • Leclaire, Sarah, et al. (författare)
  • Plumage microbiota covaries with the major histocompatibility complex in blue petrels
  • 2018
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X.
  • Tidskriftsartikel (refereegranskat)abstract
    • To increase fitness, a wide range of vertebrates preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) or that have high MHC diversity. Although MHC often can be assessed through olfactory cues, the mechanism by which MHC genes influence odour remains largely unclear. MHC class IIB molecules, which enable recognition and elimination of extracellular bacteria, have been suggested to influence odour indirectly by shaping odour-producing microbiota, i.e. bacterial communities. However, there is little evidence of the predicted covariation between an animal's MHC genotype and its bacterial communities in scent-producing body surfaces. Here, using high-throughput sequencing, we tested the covariation between MHC class IIB genotypes and feather microbiota in the blue petrel (Halobaena caerulea), a seabird with highly developed olfaction that has been suggested to rely on oduor cues during an MHC-based mate choice. First, we show that individuals with similar MHC class IIB profiles also have similar bacterial assemblages in their feathers. Then, we show that individuals with high MHC diversity have less diverse feather microbiota and also a reduced abundance of a bacterium of the genus Arsenophonus, a genus in which some species are symbionts of avian ectoparasites. Our results, showing that feather microbiota covary with MHC, are consistent with the hypothesis that individual MHC genotype may shape the semiochemical-producing microbiota in birds.
  •  
6.
  • Papadopoulos, Nikolaos G, et al. (författare)
  • Research needs in allergy: an EAACI position paper, in collaboration with EFA.
  • 2012
  • Ingår i: Clinical and translational allergy. - : Wiley. - 2045-7022. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT: In less than half a century, allergy, originally perceived as a rare disease, has become a major public health threat, today affecting the lives of more than 60 million people in Europe, and probably close to one billion worldwide, thereby heavily impacting the budgets of public health systems. More disturbingly, its prevalence and impact are on the rise, a development that has been associated with environmental and lifestyle changes accompanying the continuous process of urbanization and globalization. Therefore, there is an urgent need to prioritize and concert research efforts in the field of allergy, in order to achieve sustainable results on prevention, diagnosis and treatment of this most prevalent chronic disease of the 21st century.The European Academy of Allergy and Clinical Immunology (EAACI) is the leading professional organization in the field of allergy, promoting excellence in clinical care, education, training and basic and translational research, all with the ultimate goal of improving the health of allergic patients. The European Federation of Allergy and Airways Diseases Patients' Associations (EFA) is a non-profit network of allergy, asthma and Chronic Obstructive Pulmonary Disorder (COPD) patients' organizations. In support of their missions, the present EAACI Position Paper, in collaboration with EFA, highlights the most important research needs in the field of allergy to serve as key recommendations for future research funding at the national and European levels.Although allergies may involve almost every organ of the body and an array of diverse external factors act as triggers, there are several common themes that need to be prioritized in research efforts. As in many other chronic diseases, effective prevention, curative treatment and accurate, rapid diagnosis represent major unmet needs. Detailed phenotyping/endotyping stands out as widely required in order to arrange or re-categorize clinical syndromes into more coherent, uniform and treatment-responsive groups. Research efforts to unveil the basic pathophysiologic pathways and mechanisms, thus leading to the comprehension and resolution of the pathophysiologic complexity of allergies will allow for the design of novel patient-oriented diagnostic and treatment protocols. Several allergic diseases require well-controlled epidemiological description and surveillance, using disease registries, pharmacoeconomic evaluation, as well as large biobanks. Additionally, there is a need for extensive studies to bring promising new biotechnological innovations, such as biological agents, vaccines of modified allergen molecules and engineered components for allergy diagnosis, closer to clinical practice. Finally, particular attention should be paid to the difficult-to-manage, precarious and costly severe disease forms and/or exacerbations. Nonetheless, currently arising treatments, mainly in the fields of immunotherapy and biologicals, hold great promise for targeted and causal management of allergic conditions. Active involvement of all stakeholders, including Patient Organizations and policy makers are necessary to achieve the aims emphasized herein.
  •  
7.
  • Potier, Simon, et al. (författare)
  • Eye Size, Fovea, and Foraging Ecology in Accipitriform Raptors
  • 2017
  • Ingår i: Brain, Behavior and Evolution. - : S. Karger AG. - 0006-8977 .- 1421-9743. ; 90:3, s. 232-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Birds with larger eyes are predicted to have higher spatial resolution because of their larger retinal image. Raptors are well known for their acute vision, mediated by their deep central fovea. Because foraging strategies may demand specific visual adaptations, eye size and fovea may differ between species with different foraging ecology. We tested whether predators (actively hunting mobile prey) and carrion eaters (eating dead prey) from the order Accipitriformes differ in eye size, foveal depth, and retinal thickness using spectral domain optical coherence tomography and comparative phylogenetic methods. We found that (1) all studied predators (except one) had a central and a temporal fovea, but all carrion eaters had only the central fovea; (2) eye size scaled with body mass both in predators and carrion eaters; (3) predators had larger eyes relative to body mass and a thicker retina at the edge of the fovea than carrion eaters, but there was no difference in the depth of the central fovea between the groups. Finally, we found that (4) larger eyes generally had a deeper central fovea. These results suggest that the visual system of raptors within the order Accipitriformes may be highly adapted to the foraging strategy, except for the foveal depth, which seems mostly dependent upon the eye size.
  •  
8.
  • Potier, Simon, et al. (författare)
  • Preen oil chemical composition encodes individuality, seasonal variation and kinship in black kites Milvus migrans
  • 2018
  • Ingår i: Journal of Avian Biology. - : Wiley. - 0908-8857 .- 1600-048X. ; 49:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence that bird odour can encode social information that can be used in chemical communication is growing, but is restricted to a few taxonomic groups. Among birds, diurnal raptors (i.e. birds from the Accipitriformes and Falconiformes order) have always been considered as mainly relying on their visual abilities. Although they seem to have a functional sense of smell, whether their odour can convey social information has yet to be determined. Combining gas-chromatography-mass-spectrometry (GCMS) and microsatellite data, we tested whether chemical compounds from preen gland secretions can encode sex, age, individuality, seasonal differences and genetic relatedness in the gregarious accipitriform black kite Milvus migrans. While no differences in preen oil composition were found between age classes, an individual signature was detected. While a seasonal variation was found in both sexes, compounds differ between sexes in the non-breeding season. Finally, a significant correlation between chemical proximity and genetic proximity was detected in male–male dyads and male–female dyads but not in female–female dyads. Our study provides the first evidence in raptors that preen secretion can convey information that may potentially be used in individual recognition, reproductive synchronization and inbreeding avoidance, and suggests that raptors may rely upon their olfactory abilities more than previously thought. This study opens promising avenues for further studies in raptor chemical communication.
  •  
9.
  • Potier, Simon, et al. (författare)
  • Sight or smell : which senses do scavenging raptors use to find food?
  • 2019
  • Ingår i: Animal Cognition. - : Springer Science and Business Media LLC. - 1435-9448 .- 1435-9456. ; 22:1, s. 49-59
  • Tidskriftsartikel (refereegranskat)abstract
    • Raptors are usually considered to be mainly visually dependent, and the use of other sensory modalities has rarely been studied in these birds. Here, we investigated experimentally which senses (vision and/or olfaction) Turkey vultures (Cathartes aura) and Southern caracaras (Caracara plancus) use to find hidden food. First, two identical stainless-steel perforated balls, one containing a putrefied piece of meat and the other an odorless control, were presented to birds in binary choice experiments. Both species interacted more with the smelling ball than with the control, suggesting that they were attracted by the odor of the hidden meat. In a second experiment, individuals were accustomed to eat in one specifically colored ball (blue or green). In the test phase, the meat was hidden in the opposite color with respect to the one each bird had become accustomed to. Vultures still interacted more with the smelly ball disregarding the color, while caracaras interacted equally with the two balls. The prevalence of olfaction in Turkey vultures may partly explain why they are the first raptors to find carcasses in tropical forests. In contrast, caracaras forage on the ground opportunistically, a strategy where both olfaction and sight may be involved. Our experiments suggest that both species are able to use olfactory cues for foraging. However, olfaction could be the predominant sense in Turkey vultures while olfaction and sight could play an equivalent role in Southern caracaras.
  •  
10.
  • Potier, Simon, et al. (författare)
  • Visual abilities in two raptors with different ecology
  • 2016
  • Ingår i: Journal of Experimental Biology. - : The Company of Biologists. - 0022-0949 .- 1477-9145. ; 219:17, s. 2639-2649
  • Tidskriftsartikel (refereegranskat)abstract
    • Differences in visual capabilities are known to reflect differences in foraging behaviour even among closely related species. Among birds, the foraging of diurnal raptors is assumed to be guided mainly by vision but their foraging tactics include both scavenging upon immobile prey and the aerial pursuit of highly mobile prey. We studied how visual capabilities differ between two diurnal raptor species of similar size: Harris's hawks, Parabuteo unicinctus, which take mobile prey, and black kites, Milvus migrans, which are primarily carrion eaters. We measured visual acuity, foveal characteristics and visual fields in both species. Visual acuity was determined using a behavioural training technique; foveal characteristics were determined using ultra-high resolution spectraldomain optical coherence tomography (OCT); and visual field parameters were determined using an ophthalmoscopic reflex technique. We found that these two raptors differ in their visual capacities. Harris's hawks have a visual acuity slightly higher than that of black kites. Among the five Harris's hawks tested, individuals with higher estimated visual acuity made more horizontal head movements before making a decision. This may reflect an increase in the use of monocular vision. Harris's hawks have two foveas (one central and one temporal), while black kites have only one central fovea and a temporal area. Black kites have a wider visual field than Harris's hawks. This may facilitate the detection of conspecifics when they are scavenging. These differences in the visual capabilities of these two raptors may reflect differences in the perceptual demands of their foraging behaviours.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy