SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bondur V.) "

Sökning: WFRF:(Bondur V.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lappalainen, H. K., et al. (författare)
  • Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China - a Pan-Eurasian Experiment (PEEX) programme perspective
  • 2022
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 22:7, s. 4413-4469
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pan-Eurasian Experiment (PEEX) Science Plan, released in 2015, addressed a need for a holistic system understanding and outlined the most urgent research needs for the rapidly changing Arctic-boreal region. Air quality in China, together with the long-range transport of atmospheric pollutants, was also indicated as one of the most crucial topics of the research agenda. These two geographical regions, the northern Eurasian Arctic-boreal region and China, especially the megacities in China, were identified as a "PEEX region". It is also important to recognize that the PEEX geographical region is an area where science-based policy actions would have significant impacts on the global climate. This paper summarizes results obtained during the last 5 years in the northern Eurasian region, together with recent observations of the air quality in the urban environments in China, in the context of the PEEX programme. The main regions of interest are the Russian Arctic, northern Eurasian boreal forests (Siberia) and peatlands, and the megacities in China. We frame our analysis against research themes introduced in the PEEX Science Plan in 2015. We summarize recent progress towards an enhanced holistic understanding of the land-atmosphere-ocean systems feedbacks. We conclude that although the scientific knowledge in these regions has increased, the new results are in many cases insufficient, and there are still gaps in our understanding of large-scale climate-Earth surface interactions and feedbacks. This arises from limitations in research infrastructures, especially the lack of coordinated, continuous and comprehensive in situ observations of the study region as well as integrative data analyses, hindering a comprehensive system analysis. The fast-changing environment and ecosystem changes driven by climate change, socio-economic activities like the China Silk Road Initiative, and the global trends like urbanization further complicate such analyses. We recognize new topics with an increasing importance in the near future, especially "the enhancing biological sequestration capacity of greenhouse gases into forests and soils to mitigate climate change" and the "socio-economic development to tackle air quality issues".
  •  
2.
  • Kulmala, M., et al. (författare)
  • Introduction : The Pan-Eurasian Experiment (PEEX) - multidisciplinary, multiscale and multicomponent research and capacity-building initiative
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:22, s. 13085-13096
  • Tidskriftsartikel (refereegranskat)abstract
    • The Pan-Eurasian Experiment (PEEX) is a multidisciplinary, multiscale and multicomponent research, research infrastructure and capacity-building program. PEEX has originated from a bottom-up approach by the science communities and is aiming at resolving the major uncertainties in Earth system science and global sustainability issues concerning the Arctic and boreal pan-Eurasian regions, as well as China. The vision of PEEX is to solve interlinked, global grand challenges influencing human well-being and societies in northern Eurasia and China. Such challenges include climate change; air quality; biodiversity loss; urbanization; chemicalization; food and freshwater availability; energy production; and use of natural resources by mining, industry, energy production and transport sectors. Our approach is integrative and supra-disciplinary, recognizing the important role of the Arctic and boreal ecosystems in the Earth system. The PEEX vision includes establishing and maintaining long-term, coherent and coordinated research activities as well as continuous, comprehensive research and educational infrastructure and related capacity-building across the PEEX domain. In this paper we present the PEEX structure and summarize its motivation, objectives and future outlook.
  •  
3.
  • Lappalainen, Hanna K., et al. (författare)
  • Pan-Eurasian Experiment (PEEX) : towards a holistic understanding of the feedbacks and interactions in the land-atmosphere-ocean-society continuum in the northern Eurasian region
  • 2016
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 16:22, s. 14421-14461
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern Eurasian regions and Arctic Ocean will very likely undergo substantial changes during the next decades. The Arctic-boreal natural environments play a crucial role in the global climate via albedo change, carbon sources and sinks as well as atmospheric aerosol production from biogenic volatile organic compounds. Furthermore, it is expected that global trade activities, demographic movement, and use of natural resources will be increasing in the Arctic regions. There is a need for a novel research approach, which not only identifies and tackles the relevant multi-disciplinary research questions, but also is able to make a holistic system analysis of the expected feedbacks. In this paper, we introduce the research agenda of the Pan-Eurasian Experiment (PEEX), a multi-scale, multi-disciplinary and international program started in 2012 (https://www.atm.helsinki.fi/peex/). PEEX sets a research approach by which large-scale research topics are investigated from a system perspective and which aims to fill the key gaps in our understanding of the feedbacks and interactions between the land-atmosphereaquatic-society continuum in the northern Eurasian region. We introduce here the state of the art for the key topics in the PEEX research agenda and present the future prospects of the research, which we see relevant in this context.
  •  
4.
  • Pugach, Svetlana P., et al. (författare)
  • Dissolved organic matter and its optical characteristics in the Laptev and East Siberian seas : spatial distribution and interannual variability (2003-2011)
  • 2018
  • Ingår i: Ocean Science. - : Copernicus GmbH. - 1812-0784 .- 1812-0792. ; 14:1, s. 87-103
  • Tidskriftsartikel (refereegranskat)abstract
    • The East Siberian Arctic Shelf (ESAS) is the broadest and shallowest continental shelf in the world. It is characterized by both the highest rate of coastal erosion in the world and a large riverine input of terrigenous dissolved organic matter (DOM). DOM plays a significant role in marine aquatic ecosystems. The chromophoric fraction of DOM (CDOM) directly affects the quantity and spectral quality of available light, thereby impacting both primary production and ultraviolet (UV) exposure in aquatic ecosystems. A multiyear study of CDOM absorption, fluorescence, and spectral characteristics was carried out over the vast ESAS in the summer-fall seasons. The paper describes observations accomplished at 286 stations and 1766 in situ high-resolution optical measurements distributed along the nearshore zone. Spatial and interannual CDOM dynamics over the ESAS were investigated, and driving factors were identified. It was shown that the atmospheric circulation regime is the dominant factor controlling CDOM distribution on the ESAS. This paper explores the possibility of using CDOM and its spectral parameters to identify the different biogeochemical regimes in the surveyed area. The analysis of CDOM spectral characteristics showed that the major part of the Laptev and East Siberian seas shelf is influenced by terrigenous DOM carried in riverine discharge. Western and eastern provinces of the ESAS with distinctly different DOM optical properties were also identified; a transition between the two provinces at around 165-170 degrees E, also consistent with hydrological and hydrochemical data, is shown. In the western ESAS, a region of substantial river impact, the content of aromatic carbon within DOM remains almost constant. In the eastern ESAS, a gradual decrease in aromaticity percentage was observed, indicating contribution of Pacific-origin waters, where allochthonous DOM with predominantly aliphatic character and much smaller absorption capacity predominates. In addition, we found a stable tendency towards reduced concentrations of CDOM and dissolved lignin and an increase in spectral slope and slope ratio values eastward from the Lena River delta; the Lena is the main supplier of DOM to the eastern Arctic shelf. The strong positive correlation (r = 0.97) between dissolved organic carbon (DOC) and CDOM values in the surface shelf waters influenced by terrigenous discharge indicates that it is feasible to estimate DOC content from CDOM fluorescence assessed in situ using a WETStar fluorometer. This approach is reliable over the salinity range of 3 to 24.5. The fact that there is little difference between predicted and observed parameters indicates that the approach is justified. The direct estimation of DOM optical characteristics in the surface ESAS waters provided by this multiyear study will also be useful for validating and calibrating remote sensing data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy