SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bonfante F) "

Sökning: WFRF:(Bonfante F)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Campos, Felipe E. B., et al. (författare)
  • Are insertion torque and early osseointegration proportional? : A histologicevaluation
  • 2015
  • Ingår i: Clinical Oral Implants Research. - : John Wiley & Sons. - 0905-7161 .- 1600-0501. ; 26:11, s. 1256-1260
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectivesThe objective of this histologic study was to determine the effect of three drilling protocols (oversized, intermediate, and undersized) on biologic responses to a single implant type at early healing periods (2weeks in vivo) in a beagle dog model. Materials and methodsTen beagle dogs were acquired and subjected to surgeries in the tibia 2weeks before euthanasia. During surgery, each dog received three Unitite implants, 4mm in diameter by 10mm in length, in bone sites drilled to 3.5, 3.75, and 4.0mm in final diameter. The insertion torque was recorded during surgery, and bone-to-implant contact (BIC), and bone area fraction occupied (BAFO) measured from the histology. Each outcome measure was compared between treatment conditions with the Wilcoxon signed-rank test. Bonferroni-corrected statistical significance was set to 95%. ResultsInsertion torque increased as an inverse function of drilling diameter, as indicated by significant differences in torque levels between each pair of conditions (P=0.005). BIC and BAFO levels were highest and statistically similar in the recommended and undersized conditions and significantly reduced in the oversized condition (P<0.01). ConclusionsReduced drilling dimensions resulted in increased insertion torque (primary stability). While BIC and BAFO were maximized when drilling the recommended diameter hole, only the oversized hole resulted in evidence of statistically reduced integration.
  •  
2.
  • Coelho, Paulo G., et al. (författare)
  • Microrobotized blasting improves the bone-to-textured implant response. A preclinical in vivo biomechanical study
  • 2016
  • Ingår i: Journal of The Mechanical Behavior of Biomedical Materials. - : Elsevier. - 1751-6161 .- 1878-0180. ; 56, s. 175-182
  • Tidskriftsartikel (refereegranskat)abstract
    • This study evaluated the effect of microrobotized blasting of titanium endosteal implants relative to their manually blasted counterparts. Two different implant systems were utilized presenting two different implant surfaces. Control surfaces (Manual) were fabricated by manually grit blasting the implant surfaces while experimental surfaces (Microblasted) were fabricated through a microrobotized system that provided a one pass grit blasting routine. Both surfaces were created with the same similar to 50 gm average particle size alumina powder at similar to 310 KPa. Surfaces were then etched with 37% HCl for 20 min, washed, and packaged through standard industry procedures. The surfaces were characterized through scanning electron microscopy (SEM) and optical interferometry, and were then placed in a beagle dog radius model remaining in vivo for 3 and 6 weeks. The implant removal torque was recorded and statistical analysis evaluated implant system and surface type torque levels as a function of time in vivo. Histologic sections were qualitatively evaluated for tissue response. Electron microscopy depicted textured surfaces for both manual and microblasted surfaces. Optical interferometry showed significantly higher S-a, S-q, values for the microblasted surface and no significant difference for S-ds and S-dr values between surfaces. In vivo results depicted that statistically significant gains in biomechanical fixation were obtained for both implant systems tested at 6 weeks in vivo, while only one system presented significant biomechanical gain at 3 weeks. Histologic sections showed qualitative higher amounts of new bone forming around microblasted implants relative to the manually blasted group. Microrobotized blasting resulted in higher biomechanical fixation of endosteal dental implants and should be considered as an alternative for impant surface manufacturing.
  •  
3.
  • Coelho, Paulo G., et al. (författare)
  • Osseointegration of Plateau Root Form Implants : Unique Healing Pathway Leading to Haversian-Like Long-Term Morphology
  • 2015
  • Ingår i: Engineering Mineralized and Load Bearing Tissue. - Cham : Springer. - 9783319223452 - 9783319223445 ; , s. 111-128
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Endosteal dental implants have been utilized as anchors for dental and orthopedic rehabilitations for decades with one of the highest treatment success rates in medicine. Such success is due to the phenomenon of osseointegration where after the implant surgical placement, bone healing results into an intimate contact between bone and implant surface. While osseointegration is an established phenomenon, the route which osseointegration occurs around endosteal implants is related to various implant design factors including surgical instrumentation and implant macro, micro, and nanometer scale geometry. In an implant system where void spaces (healing chambers) are present between the implant and bone immediately after placement, its inherent bone healing pathway results in unique opportunities to accelerate the osseointegration phenomenon at the short-term and its maintenance on the long-term through a haversian-like bone morphology and mechanical properties.
  •  
4.
  •  
5.
  •  
6.
  • Gil, Luiz F., et al. (författare)
  • Progressive plateau root form dental implant osseointegration : a human retrieval study
  • 2015
  • Ingår i: Journal of Biomedical Materials Research. Part B - Applied biomaterials. - : John Wiley & Sons. - 1552-4973 .- 1552-4981. ; 103:6, s. 1328-1332
  • Tidskriftsartikel (refereegranskat)abstract
    • Although preclinical and sparse human histology retrieval studies have shown that the interface between implant and bone is constantly remodeling, no human retrieval database has been developed to determine the effect of functional loading time and other clinical/implant design variables on osseointegration. The present study tested the hypothesis that bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) increase over functional loading time around dental implants. Due to prosthetic retreatment reasons, 93 human implant retrievals from the same manufacturer (Bicon LLC, Boston, MA, USA) were obtained over a period of approximately 15 years. The retrieved implants were under functional loading from 120 days to approximate to 18 years and were histomorphologic/metrically evaluated. BIC/BAFO were assessed as a function of multiple independent variables: implant surface type, diameter, length, jaw (maxilla/mandible), region (anterior/posterior), and time of functional loading. The results showed that both BIC and BAFO increased over time independently of implant design/clinical variables, supporting the postulated hypothesis. (c) 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1328-1332, 2015.
  •  
7.
  • Lahens, Bradley, et al. (författare)
  • The effect of osseodensification drilling for endosteal implants with different surface treatments : A study in sheep.
  • 2019
  • Ingår i: Journal of Biomedical Materials Research. Part B - Applied biomaterials. - : John Wiley & Sons. - 1552-4973 .- 1552-4981. ; 107:3, s. 615-623
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigated the effects of osseodensification drilling on the stability and osseointegration of machine-cut and acid-etched endosteal implants in low-density bone. Twelve sheep received six implants inserted into the ilium, bilaterally (n = 36 acid-etched, and n = 36 as-machined). Individual animals received three implants of each surface, placed via different surgical techniques: (1) subtractive regular-drilling (R): 2.0 mm pilot, 3.2 and 3.8 mm twist drills); (2) osseodensification clockwise-drilling (CW): Densah Bur (Versah, Jackson, MI) 2.0 mm pilot, 2.8, and 3.8 mm multifluted tapered burs; and (3) osseodensification counterclockwise-drilling (CCW) Densah Bur 2.0 mm pilot, 2.8 mm, and 3.8 mm multifluted tapered burs. Insertion torque was higher in the CCW and CW-drilling compared to the R-drilling (p < 0.001). Bone-to-implant contact (BIC) was significantly higher for CW (p = 0.024) and CCW-drilling (p = 0.006) compared to the R-drilling technique. For CCW-osseodensification-drilling, no statistical difference between the acid-etched and machine-cut implants at both time points was observed for BIC and BAFO (bone-area-fraction-occupancy). Resorbed bone and bone forming precursors, preosteoblasts, were observed at 3-weeks. At 12-weeks, new bone formation was observed in all groups extending to the trabecular region. In low-density bone, endosteal implants inserted via osseodensification-drilling presented higher stability and no osseointegration impairments compared to subtractive regular-drilling technique, regardless of evaluation time or implant surface. (c) 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 00B: 000-000, 2018.
  •  
8.
  • Marao, Heloisa F., et al. (författare)
  • Cortical and Trabecular Bone Healing Patterns and Quantification for Three Different Dental Implant Systems
  • 2017
  • Ingår i: International Journal of Oral & Maxillofacial Implants. - : Quintessence. - 0882-2786 .- 1942-4434. ; 32:3, s. 585-592
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The present study hypothesized that different bone healing patterns through initial stages of osseointegration would be observed when three distinct commercially available implant systems (Nobel Groovy, Implacil, and Zimmer TSV) were used, leading to significant variations in histometric levels of total bone and new bone formation during the osseointegration process. Materials and Methods: A total of 48 implants were placed bilaterally on the tibias of eight beagle dogs and allowed to heal for 2 and 6 weeks. Following euthanasia, nondecalcified specimens were processed for morphologic and histometric evaluation. Bone-to-implant contact (BIC) and new bone area fraction occupancy (BAFO) analyses for native and new bone were performed along the whole perimeter of each implant and separately for the cortical and trabecular bone regions. Results: Morphologic evaluation of cortical bone presented different healing patterns and osseointegration levels for different implant systems as time elapsed in vivo. Interfacial remodeling was the chief healing pattern in Zimmer implants, while a combination of interfacial remodeling and healing chambers was observed in Nobel and Implacil implants. When trabecular bone was evaluated, similar bone healing patterns were observed between systems despite different levels of osseointegration observed as a function of implantation time, implant system, and native and/or new bone BIC and BAFO. Conclusion: Different implant systems led to different healing patterns during early stages of osseointegration. Such variation in pattern was more noticeable in the cortical regions compared to the trabecular regions. The variation in bone healing pattern did significantly influence overall indicators of native and new BIC and BAFO during the osseointegration process. The postulated hypothesis was accepted.
  •  
9.
  • Reyer, Christopher P. O., et al. (författare)
  • A plant's perspective of extremes : terrestrial plant responses to changing climatic variability
  • 2013
  • Ingår i: Global Change Biology. - HOBOKEN 07030-5774, NJ USA : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 19:1, s. 75-89
  • Forskningsöversikt (refereegranskat)abstract
    • We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy