SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bonke M) "

Sökning: WFRF:(Bonke M)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonke, M, et al. (författare)
  • Transcriptional networks controlling the cell cycle
  • 2013
  • Ingår i: G3 (Bethesda, Md.). - : Oxford University Press (OUP). - 2160-1836. ; 3:1, s. 75-90
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we map the transcriptional targets of 107 previously identified Drosophila genes whose loss caused the strongest cell-cycle phenotypes in a genome-wide RNA interference screen and mine the resulting data computationally. Besides confirming existing knowledge, the analysis revealed several regulatory systems, among which were two highly-specific and interconnected feedback circuits, one between the ribosome and the proteasome that controls overall protein homeostasis, and the other between the ribosome and Myc/Max that regulates the protein synthesis capacity of cells. We also identified a set of genes that alter the timing of mitosis without affecting gene expression, indicating that the cyclic transcriptional program that produces the components required for cell division can be partially uncoupled from the cell division process itself. These genes all have a function in a pathway that regulates the phosphorylation state of Cdk1. We provide evidence showing that this pathway is involved in regulation of cell size, indicating that a Cdk1-regulated cell size checkpoint exists in metazoans.
  •  
2.
  •  
3.
  • Jolma, A, et al. (författare)
  • Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities
  • 2010
  • Ingår i: Genome research. - : Cold Spring Harbor Laboratory. - 1549-5469 .- 1088-9051. ; 20:6, s. 861-873
  • Tidskriftsartikel (refereegranskat)abstract
    • The genetic code—the binding specificity of all transfer-RNAs—defines how protein primary structure is determined by DNA sequence. DNA also dictates when and where proteins are expressed, and this information is encoded in a pattern of specific sequence motifs that are recognized by transcription factors. However, the DNA-binding specificity is only known for a small fraction of the ∼1400 human transcription factors (TFs). We describe here a high-throughput method for analyzing transcription factor binding specificity that is based on systematic evolution of ligands by exponential enrichment (SELEX) and massively parallel sequencing. The method is optimized for analysis of large numbers of TFs in parallel through the use of affinity-tagged proteins, barcoded selection oligonucleotides, and multiplexed sequencing. Data are analyzed by a new bioinformatic platform that uses the hundreds of thousands of sequencing reads obtained to control the quality of the experiments and to generate binding motifs for the TFs. The described technology allows higher throughput and identification of much longer binding profiles than current microarray-based methods. In addition, as our method is based on proteins expressed in mammalian cells, it can also be used to characterize DNA-binding preferences of full-length proteins or proteins requiring post-translational modifications. We validate the method by determining binding specificities of 14 different classes of TFs and by confirming the specificities for NFATC1 and RFX3 using ChIP-seq. Our results reveal unexpected dimeric modes of binding for several factors that were thought to preferentially bind DNA as monomers.
  •  
4.
  •  
5.
  • Mikkelsen, Randi Bonke, et al. (författare)
  • Type 2 diabetes is associated with increased circulating levels of 3-hydroxydecanoate activating GPR84 and neutrophil migration
  • 2022
  • Ingår i: iScience. - : Elsevier BV. - 2589-0042. ; 25:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity and diabetes are associated with inflammation and altered plasma levels of several metabolites, which may be involved in disease progression. Some metabolites can activate G protein-coupled receptors (GPCRs) expressed on immune cells where they can modulate metabolic inflammation. Here, we find that 3-hydroxydecanoate is enriched in the circulation of obese individuals with type 2 diabetes (T2D) compared with nondiabetic controls. Administration of 3-hydroxydecanoate to mice promotes immune cell recruitment to adipose tissue, which was associated with adipose inflammation and increased fasting insulin levels. Furthermore, we demonstrate that 3-hydroxydecanoate stimulates migration of primary human and mouse neutrophils, but not monocytes, through GPR84 and Gαi signaling in vitro. Our findings indicate that 3-hydroxydecanoate is a T2D-associated metabolite that increases inflammatory responses and may contribute to the chronic inflammation observed in diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy