SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bonnet Dominique) "

Sökning: WFRF:(Bonnet Dominique)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lawrenson, Kate, et al. (författare)
  • Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
  • 2016
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.
  •  
2.
  • Engert, Andreas, et al. (författare)
  • The European Hematology Association Roadmap for European Hematology Research : a consensus document
  • 2016
  • Ingår i: Haematologica. - Pavia, Italy : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:2, s. 115-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Hematology Association (EHA) Roadmap for European Hematology Research highlights major achievements in diagnosis and treatment of blood disorders and identifies the greatest unmet clinical and scientific needs in those areas to enable better funded, more focused European hematology research. Initiated by the EHA, around 300 experts contributed to the consensus document, which will help European policy makers, research funders, research organizations, researchers, and patient groups make better informed decisions on hematology research. It also aims to raise public awareness of the burden of blood disorders on European society, which purely in economic terms is estimated at (sic)23 billion per year, a level of cost that is not matched in current European hematology research funding. In recent decades, hematology research has improved our fundamental understanding of the biology of blood disorders, and has improved diagnostics and treatments, sometimes in revolutionary ways. This progress highlights the potential of focused basic research programs such as this EHA Roadmap. The EHA Roadmap identifies nine 'sections' in hematology: normal hematopoiesis, malignant lymphoid and myeloid diseases, anemias and related diseases, platelet disorders, blood coagulation and hemostatic disorders, transfusion medicine, infections in hematology, and hematopoietic stem cell transplantation. These sections span 60 smaller groups of diseases or disorders. The EHA Roadmap identifies priorities and needs across the field of hematology, including those to develop targeted therapies based on genomic profiling and chemical biology, to eradicate minimal residual malignant disease, and to develop cellular immunotherapies, combination treatments, gene therapies, hematopoietic stem cell treatments, and treatments that are better tolerated by elderly patients.
  •  
3.
  • Kaptoge, S., et al. (författare)
  • World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions
  • 2019
  • Ingår i: Lancet Global Health. - : Elsevier BV. - 2214-109X. ; 7:10, s. E1332-E1345
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To help adapt cardiovascular disease risk prediction approaches to low-income and middle-income countries, WHO has convened an effort to develop, evaluate, and illustrate revised risk models. Here, we report the derivation, validation, and illustration of the revised WHO cardiovascular disease risk prediction charts that have been adapted to the circumstances of 21 global regions. Methods In this model revision initiative, we derived 10-year risk prediction models for fatal and non-fatal cardiovascular disease (ie, myocardial infarction and stroke) using individual participant data from the Emerging Risk Factors Collaboration. Models included information on age, smoking status, systolic blood pressure, history of diabetes, and total cholesterol. For derivation, we included participants aged 40-80 years without a known baseline history of cardiovascular disease, who were followed up until the first myocardial infarction, fatal coronary heart disease, or stroke event. We recalibrated models using age-specific and sex-specific incidences and risk factor values available from 21 global regions. For external validation, we analysed individual participant data from studies distinct from those used in model derivation. We illustrated models by analysing data on a further 123 743 individuals from surveys in 79 countries collected with the WHO STEPwise Approach to Surveillance. Findings Our risk model derivation involved 376 177 individuals from 85 cohorts, and 19 333 incident cardiovascular events recorded during 10 years of follow-up. The derived risk prediction models discriminated well in external validation cohorts (19 cohorts, 1 096 061 individuals, 25 950 cardiovascular disease events), with Harrell's C indices ranging from 0.685 (95% CI 0 . 629-0 741) to 0.833 (0 . 783-0- 882). For a given risk factor profile, we found substantial variation across global regions in the estimated 10-year predicted risk. For example, estimated cardiovascular disease risk for a 60-year-old male smoker without diabetes and with systolic blood pressure of 140 mm Hg and total cholesterol of 5 mmol/L ranged from 11% in Andean Latin America to 30% in central Asia. When applied to data from 79 countries (mostly low-income and middle-income countries), the proportion of individuals aged 40-64 years estimated to be at greater than 20% risk ranged from less than 1% in Uganda to more than 16% in Egypt. Interpretation We have derived, calibrated, and validated new WHO risk prediction models to estimate cardiovascular disease risk in 21 Global Burden of Disease regions. The widespread use of these models could enhance the accuracy, practicability, and sustainability of efforts to reduce the burden of cardiovascular disease worldwide. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.
  •  
4.
  • Poulin, Lionel F., et al. (författare)
  • DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues
  • 2012
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 119:25, s. 6052-6062
  • Tidskriftsartikel (refereegranskat)abstract
    • Mouse CD8 alpha(+) dendritic cells (DCs) in lymphoid organs and CD103(+) CD11b(-) DCs in nonlymphoid tissues share phenotypic and functional similarities, as well as a unique shared developmental dependence on the transcription factor Batf3. Human DCs resembling mouse CD8 alpha(+) DCs in phenotype and function have been identified in human blood, spleen, and tonsil. However, it is not clear whether such cells are also present in human nonlymphoid organs, and their equivalence to mouse CD8 alpha(+) DC has recently b een questioned. Furthermore, the identification of "CD8 alpha(+) DC-like" cells across different tissues and species remains problematic because of the lack of a unique marker that can be used to unambiguously define lineage members. Here we show that mouse CD8 alpha(+) DCs and CD103(+) CD11b(-) DCs can be defined by shared high expression of DNGR-1 (CLEC9A). We further show that DNGR-1 uniquely marks a CD11b(-) human DC population present in both lymphoid and nonlymphoid tissues of humans and humanized mice. Finally, we demonstrate that knockdown of Batf3 selectively prevents the development of DNGR-1(+) human DCs in vitro. Thus, high expression of DNGR-1 specifically and universally identifies a unique DC subset in mouse and humans. Evolutionarily conserved Batf3 dependence justifies classification of DNGR-1(hi) DCs as a distinct DC lineage. (Blood. 2012; 119(25): 6052-6062)
  •  
5.
  • Rak, Justyna, et al. (författare)
  • Cytohesin 1 regulates homing and engraftment of human hematopoietic stem and progenitor cells
  • 2017
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 129:8, s. 950-958
  • Tidskriftsartikel (refereegranskat)abstract
    • Adhesion is a key component of hematopoietic stem cell regulation mediating homing and retention to the niche in the bone marrow. Here, using an RNA interference screen, we identify cytohesin 1 (CYTH1) as a critical mediator of adhesive properties in primary human cord blood-derived hematopoietic stem and progenitor cells (HSPCs). Knockdown of CYTH1 disrupted adhesion of HSPCs to primary human mesenchymal stroma cells. Attachment to fibronectin and ICAM1, 2 integrin ligands, was severely impaired, and CYTH1-deficient cells showed a reduced integrin b1 activation response, suggesting that CYTH1 mediates integrin-dependent functions. Transplantation of CYTH1-knockdown cells to immunodeficient mice resulted in significantly lower long-term engraftment levels, associated with a reduced capacity of the transplanted cells to home to the bone marrow. Intravital microscopy showed that CYTH1 deficiency profoundly affects HSPC mobility and localization within the marrow space and thereby impairs proper lodgment into the niche. Thus, CYTH1 is a novel major regulator of adhesion and engraftment in human HSPCs through mechanisms that, at least in part, involve the activation of integrins.
  •  
6.
  • Shungin, Dmitry, et al. (författare)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Tidskriftsartikel (refereegranskat)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
7.
  • Sommerkamp, Pia, et al. (författare)
  • Engineering human hematopoietic environments through ossicle and bioreactor technologies exploitation
  • 2021
  • Ingår i: Experimental Hematology. - : Elsevier BV. - 0301-472X. ; 94
  • Forskningsöversikt (refereegranskat)abstract
    • The bone marrow microenvironment contains cellular niches that maintain the pool of hematopoietic stem and progenitor cells and support hematopoietic maturation. Malignant hematopoietic cells also co-opt normal cellular interactions to promote their own growth and evade therapy. In vivo systems used to study human hematopoiesis have been developed through transplantation into immunodeficient mouse models. However, incomplete cross-compatibility between the murine stroma and transplanted human hematopoietic cells limits the rate of engraftment and the study of relevant interactions. To supplement in vivo xenotransplantation models, complementary strategies have recently been developed, including the use of three-dimensional human bone marrow organoids in vivo, generated from bone marrow stromal cells seeded onto osteo-inductive scaffolds, as well as the use of ex vivo bioreactor models. These topics were the focus of the Spring 2020 International Society for Experimental Hematology New Investigator webinar. We review here the latest advances in generating humanized hematopoietic organoids and how they allow for the study of novel microenvironmental interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy