SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boratynski Zbyszek) "

Sökning: WFRF:(Boratynski Zbyszek)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boratynski, Zbyszek, et al. (författare)
  • Increased radiation from Chernobyl decreases the expression of red colouration in natural populations of bank voles (Myodes glareolus)
  • 2014
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 4, s. 7141-
  • Tidskriftsartikel (refereegranskat)abstract
    • Pheomelanin is a pink to red version of melanin pigment deposited in skin and hair. Due to its bright colour, pheomelanin plays a crucial function in signalling, in particular sexual signalling. However, production of pheomelanin, as opposed to its dark alternative, eumelanin, bears costs in terms of consumption of antioxidants important for protection of DNA against naturally produced reactive oxidative species. Therefore, decreased expression of pheomelanin is expected in organisms exposed to severe oxidative stress such as that caused by exposure to chronic ionizing radiation. We tested if variable exposure to radiation among natural populations of bank voles Myodes glareolus in Chernobyl affected expression of red colouration in their dorsal fur. The relative redness of dorsal fur was positively correlated with weight, but also negatively correlated with the level of background radiation. These results suggest that the development of the natural red colouration in adult bank voles is affected by ionizing background radiation, and potentially causing elevated levels of oxidative stress. Reduced production of pheomelanin allows more antioxidants to mitigate the oxidative stress caused by radiation. However, changing natural animal colouration for physiological reasons can have ecological costs, if e.g. it causes mismatch with habitat colouration and conspicuousness for predators.
  •  
2.
  • Kivisaari, Kati, et al. (författare)
  • Chronic Background Radiation Correlates With Sperm Swimming Endurance in Bank Voles From Chernobyl
  • 2022
  • Ingår i: Frontiers in Ecology and Evolution. - : Frontiers Media SA. - 2296-701X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Sperm quantity and quality are key features explaining intra- and interspecific variation in male reproductive success. Spermatogenesis is sensitive to ionizing radiation and laboratory studies investigating acute effects of ionizing radiation have indeed found negative effects of radiation on sperm quantity and quality. In nature, levels of natural background radiation vary dramatically, and chronic effects of low-level background radiation exposure on spermatogenesis are poorly understood. The Chernobyl region offers a unique research opportunity for investigating effects of chronic low-level ionizing radiation on reproductive properties of wild organisms. We captured male bank voles (Myodes glareolus) from 24 locations in the Chernobyl exclusion zone in 2011 and 2015 and collected information on sperm morphology and kinetics. The dataset is limited in size and there overall was a relatively weak correlation between background radiation and sperm quality. Still, some correlations are worth discussing. First, mid-piece segments of spermatozoa tended to be smaller in bank vole males from areas with elevated background radiation levels. Second, we demonstrated a significant positive relationship between background radiation dose rates and the proportion of static spermatozoa among males within and among study locations after 10 as well as 60 min of incubation. Our results provide novel evidence of damaging effects of low dose ionizing radiation on sperm performance in wild rodent populations, and highlight that this topic requires further study across the natural gradients of background radiation that exist in nature.
  •  
3.
  • Kivisaari, Kati, et al. (författare)
  • The effect of chronic low-dose environmental radiation on organ mass of bank voles in the Chernobyl exclusion zone
  • 2020
  • Ingår i: International Journal of Radiation Biology. - : Informa UK Limited. - 0955-3002 .- 1362-3095. ; 96:10, s. 1254-1262
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Animals are exposed to environmental ionizing radiation (IR) externally through proximity to contaminated soil and internally through ingestion and inhalation of radionuclides. Internal organs can respond to radioactive contamination through physiological stress. Chronic stress can compromise the size of physiologically active organs, but studies on wild mammal populations are scarce. The effects of environmental IR contamination on organ masses were studied by using a wild rodent inhabiting the Chernobyl exclusion zone (CEZ).Material and methods: The masses of brain, heart, kidney, spleen, liver and lung were assessed from bank voles (Myodes glareolus) captured from areas across radioactive contamination gradient within the CEZ. Relative organ masses were used to correct for the body mass of an individual.Results: Results showed a significant negative correlation between IR level in the environment and relative brain and kidney mass. A significant positive correlation between IR and relative heart mass was also found. Principal component analysis (PCA) also suggested positive relationship between IR and relative spleen mass; however, this relationship was not significant when spleen was analyzed separately. There was no apparent relationship between IR and relative liver or lung mass.Conclusions: Results suggest that in the wild populations even low but chronic doses of IR can lead to changes in relative organ mass. The novelty of these result is showing that exposure to low doses can affect the organ masses in similar fashion as previously shown on high, acute, radiation doses. These data support the hypothesis that wildlife might be more sensitive to IR than animals used in laboratory studies. However, more research is needed to rule out the other indirect effects such as radiosensitivity of the food sources or possible combined stress effects from e.g. infections.
  •  
4.
  • Lehmann, Philipp, et al. (författare)
  • Fitness costs of increased cataract frequency and cumulative radiation dose in natural mammalian populations from Chernobyl
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • A cataract is a clouding of the lens that reduces light transmission to the retina, and it decreases the visual acuity of the bearer. The prevalence of cataracts in natural populations of mammals, and their potential ecological significance, is poorly known. Cataracts have been reported to arise from high levels of oxidative stress and a major cause of oxidative stress is ionizing radiation. We investigated whether elevated frequencies of cataracts are found in eyes of bank voles Myodes glareolus collected from natural populations in areas with varying levels of background radiation in Chernobyl. We found high frequencies of cataracts in voles collected from different areas in Chernobyl. The frequency of cataracts was positively correlated with age, and in females also with the accumulated radiation dose. Furthermore, the number of offspring in female voles was negatively correlated with cataract severity. The results suggest that cataracts primarily develop as a function of ionizing background radiation, most likely as a plastic response to high levels of oxidative stress. It is therefore possible that the elevated levels of background radiation in Chernobyl affect the ecology and fitness of local mammals both directly through, for instance, reduced fertility and indirectly, through increased cataractogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy