SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borda Miguel German) "

Sökning: WFRF:(Borda Miguel German)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ademuyiwa, Adesoji O., et al. (författare)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • Ingår i: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
2.
  • Borda, Miguel German, et al. (författare)
  • Nutrient Intake and Its Association with Appendicular Total Lean Mass and Muscle Function and Strength in Older Adults: A Population-Based Study
  • 2024
  • Ingår i: NUTRIENTS. - : MDPI. - 2072-6643. ; 16:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Treatment options for sarcopenia are currently limited, and primarily rely on two main therapeutic approaches: resistance-based physical activity and dietary interventions. However, details about specific nutrients in the diet or supplementation are unclear. We aim to investigate the relationship between nutrient intake and lean mass, function, and strength. Data were derived from the Gothenburg H70 birth cohort study in Sweden, including 719,70-year-olds born in 1944 (54.1% females). For independent variables, the diet history method (face-to-face interviews) was used to estimate habitual food intake during the preceding three months. Dependent variables were gait speed (muscle performance), hand grip strength (muscle strength), and the appendicular lean soft tissue index (ALSTI). Linear regression analyses were performed to analyze the relationship between the dependent variables and each of the covariates. Several nutrients were positively associated with ALSTI, such as polyunsaturated fatty acids (DHA, EPA), selenium, zinc, riboflavin, niacin equivalent, vitamin B12, vitamin D, iron, and protein. After correction for multiple comparisons, there were no remaining correlations with handgrip and gait speed. Findings of positive correlations for some nutrients with lean mass suggest a role for these nutrients in maintaining muscle volume. These results can be used to inform clinical trials to expand the preventive strategies and treatment options for individuals at risk of muscle loss and sarcopenia.
  •  
3.
  • Borda, Miguel German, et al. (författare)
  • Temporal Muscle Thickness: A Practical Approximation for Assessing Muscle Mass in Older Adults
  • 2024
  • Ingår i: JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION. - 1525-8610 .- 1538-9375. ; 25:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: Ongoing research has evidenced the importance of muscle measurement in predicting adverse outcomes. Measurement of other muscles is promising in current research. This study aimed to determine the correlation between temporal muscle thickness (TMT) and appendicular lean soft tissue (ALSTI) in older adults. Design: Cross-sectional study. Settings and Participants: Single cohort gathered in Gothenburg, Sweden, consisting of individuals born in 1944 (n = 1203). Methods: We studied 657 magnetic resonance images to measure TMT. Comparisons of TMT with dual -energy X-ray absorptiometry ALSTI (kg/m 2 ) as a reference standard were performed. Finally, TMT associations with cognition evaluated using the Mini -Mental State Examination (MMSE), gait speed, and handgrip strength were explored with linear regressions. Results: The correlation between TMT and ALSTI was weak yet signi ficant (r = 0.277, P < .001). TMT exhibited signi ficant associations with MMSE (estimate = 0.168, P = .002), gait speed (estimate =1.795, P < .001), and ALSTI (estimate = 0.508, P < .001). These associations varied when analyzed by sex. In women, TMT was signi ficantly associated with gait speed (estimate = 1.857, P = .005) and MMSE (estimate = 0.223, P = .003). In men, TMT scores were signi ficantly correlated with ALSTI scores (estimate = 0.571, P < .001). Conclusion and Implications: Repurposing head images can be an accessible alternative to detect muscle mass and ultimately detect sarcopenia. These studies have the potential to trigger interventions or further evaluation to improve the muscle and overall health of individuals. However, additional research is warranted before translating these findings into clinical practice. (c) 2024 AMDA - The Society for Post -Acute and Long -Term Care Medicine.
  •  
4.
  • Borda, Miguel German, et al. (författare)
  • Using magnetic resonance imaging to measure head muscles: An innovative method to opportunistically determine muscle mass and detect sarcopenia
  • 2024
  • Ingår i: Journal of Cachexia, Sarcopenia and Muscle. - 2190-5991 .- 2190-6009. ; 15:1, s. 189-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Sarcopenia is associated with multiple adverse outcomes. Traditional methods to determine low muscle mass for the diagnosis of sarcopenia are mainly based on dual-energy X-ray absorptiometry (DXA), whole-body magnetic resonance imaging (MRI) and bioelectrical impedance analysis. These tests are not always available and are rather time consuming and expensive. However, many brain and head diseases require a head MRI. In this study, we aim to provide a more accessible way to detect sarcopenia by comparing the traditional method of DXA lean mass estimation versus the tongue and masseter muscle mass assessed in a standard brain MRI. Methods: The H70 study is a longitudinal study of older people living in Gothenburg, Sweden. In this cross-sectional analysis, from 1203 participants aged 70years at baseline, we included 495 with clinical data and MRI images available. We used the appendicular lean soft tissue index (ALSTI) in DXA images as our reference measure of lean mass. Images from the masseter and tongue were analysed and segmented using 3D Slicer. For the statistical analysis, the Spearman correlation coefficient was used, and concordance was estimated with the Kappa coefficient. Results: The final sample consisted of 495 participants, of which 52.3% were females. We found a significant correlation coefficient between both tongue (0.26) and masseter (0.33) with ALSTI (P<0.001). The sarcopenia prevalence confirmed using the alternative muscle measure in MRI was calculated using the ALSTI (tongue=2.0%, masseter=2.2%, ALSTI=2.4%). Concordance between sarcopenia with masseter and tongue versus sarcopenia with ALSTI as reference has a Kappa of 0.989 (P<0.001) for masseter and a Kappa of 1 for the tongue muscle (P<0.001). Comorbidities evaluated with the Cumulative Illness Rating Scale were significantly associated with all the muscle measurements: ALSTI (odds ratio [OR] 1.16, 95% confidence interval [CI] 1.07–1.26, P<0.001), masseter (OR 1.16, 95% CI 1.07–1.26, P<0.001) and tongue (OR 1.13, 95% CI 1.04–1.22, P=0.002); the higher the comorbidities, the higher the probability of having abnormal muscle mass. Conclusions: ALSTI was significantly correlated with tongue and masseter muscle mass. When performing the sarcopenia diagnostic algorithm, the prevalence of sarcopenia calculated with head muscles did not differ from sarcopenia calculated using DXA, and almost all participants were correctly classified using both methods.
  •  
5.
  • Gurholt, Tiril P., et al. (författare)
  • Linking sarcopenia, brain structure and cognitive performance: a large-scale UK Biobank study
  • 2024
  • Ingår i: Brain Communications. - : OXFORD UNIV PRESS. - 2632-1297. ; 6:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarcopenia refers to age-related loss of muscle mass and function and is related to impaired somatic and brain health, including cognitive decline and Alzheimer's disease. However, the relationships between sarcopenia, brain structure and cognition are poorly understood. Here, we investigate the associations between sarcopenic traits, brain structure and cognitive performance. We included 33 709 UK Biobank participants (54.2% female; age range 44-82 years) with structural and diffusion magnetic resonance imaging, thigh muscle fat infiltration (n = 30 561) from whole-body magnetic resonance imaging (muscle quality indicator) and general cognitive performance as indicated by the first principal component of a principal component analysis across multiple cognitive tests (n = 22 530). Of these, 1703 participants qualified for probable sarcopenia based on low handgrip strength, and we assigned the remaining 32 006 participants to the non-sarcopenia group. We used multiple linear regression to test how sarcopenic traits (probable sarcopenia versus non-sarcopenia and percentage of thigh muscle fat infiltration) relate to cognitive performance and brain structure (cortical thickness and area, white matter fractional anisotropy and deep and lower brain volumes). Next, we used structural equation modelling to test whether brain structure mediated the association between sarcopenic and cognitive traits. We adjusted all statistical analyses for confounders. We show that sarcopenic traits (probable sarcopenia versus non-sarcopenia and muscle fat infiltration) are significantly associated with lower cognitive performance and various brain magnetic resonance imaging measures. In probable sarcopenia, for the included brain regions, we observed widespread significant lower white matter fractional anisotropy (77.1% of tracts), predominantly lower regional brain volumes (61.3% of volumes) and thinner cortical thickness (37.9% of parcellations), with |r| effect sizes in (0.02, 0.06) and P-values in (0.0002, 4.2e(-29)). In contrast, we observed significant associations between higher muscle fat infiltration and widespread thinner cortical thickness (76.5% of parcellations), lower white matter fractional anisotropy (62.5% of tracts) and predominantly lower brain volumes (35.5% of volumes), with |r| effect sizes in (0.02, 0.07) and P-values in (0.0002, 1.9e(-31)). The regions showing the most significant effect sizes across the cortex, white matter and volumes were of the sensorimotor system. Structural equation modelling analysis revealed that sensorimotor brain regions mediate the link between sarcopenic and cognitive traits [probable sarcopenia: P-values in (0.0001, 1.0e-11); muscle fat infiltration: P-values in (7.7e(-05), 1.7e(-12))]. Our findings show significant associations between sarcopenic traits, brain structure and cognitive performance in a middle-aged and older adult population. Mediation analyses suggest that regional brain structure mediates the association between sarcopenic and cognitive traits, with potential implications for dementia development and prevention.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy