SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borgström Magnus T) "

Sökning: WFRF:(Borgström Magnus T)

  • Resultat 1-10 av 72
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zeng, Xulu, et al. (författare)
  • Electrical and optical evaluation of n-type doping in InxGa(1-x)P nanowires
  • 2018
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 29:25
  • Tidskriftsartikel (refereegranskat)abstract
    • To harvest the benefits of III-V nanowires in optoelectronic devices, the development of ternary materials with controlled doping is needed. In this work, we performed a systematic study of n-type dopant incorporation in dense InxGa(1-x)P nanowire arrays using tetraethyl tin (TESn) and hydrogen sulfide (H2S) as dopant precursors. The morphology, crystal structure and material composition of the nanowires were characterized by use of scanning electron microscopy, transmission electron microscopy and energy dispersive x-ray analysis. To investigate the electrical properties, the nanowires were broken off from the substrate and mechanically transferred to thermally oxidized silicon substrates, after which electron beam lithography and metal evaporation were used to define electrical contacts to selected nanowires. Electrical characterization, including four-probe resistivity and Hall effect, as well as back-gated field effect measurements, is combined with photoluminescence spectroscopy to achieve a comprehensive evaluation of the carrier concentration in the doped nanowires. We measure a carrier concentration of ∼1 ×1016 cm-3 in nominally intrinsic nanowires, and the maximum doping level achieved by use of TESn and H2S as dopant precursors using our parameters is measured to be ∼2 ×1018 cm-3, and ∼1 ×1019 cm-3, respectively (by Hall effect measurements). Hence, both TESn and H2S are suitable precursors for a wide range of n-doping levels in InxGa(1-x)P nanowires needed for optoelectronic devices, grown via the vapor-liquid-solid mode.
  •  
2.
  • Zeng, Xulu, et al. (författare)
  • InP/GaInP nanowire tunnel diodes
  • 2018
  • Ingår i: Nano Research. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 11:5, s. 2523-2531
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconductor nanowire (NW) solar cells with a single p-n junction have exhibited efficiency comparable to that of their planar counterparts with a substantial reduction in material consumption. Tandem geometry is a path toward the fabrication of devices with even higher efficiencies, for which a key step is the fabrication of tunnel (Esaki) diodes within NWs with the correct diameter, pitch, and material combination for maximized efficiency. InP/GaInP and GaInP/InP NW tunnel diodes with band gap combinations corresponding to high-efficiency solar energy harvesting were fabricated and their electrical characteristics and material properties were compared. Four different configurations, with respect to material composition and doping, were investigated. The NW arrays were grown with metal–organic vapor-phase epitaxy from Au particles by use of nano-imprint lithography, metal evaporation and lift-off. Electrical measurements showed that the NWs behave as tunnel diodes in both InP (bottom)/GaInP (top) and GaInP (bottom)/InP (top) configurations, exhibiting a maximum peak current density of 25 A/cm2, and maximum peak to valley current ratio of 2.5 at room temperature. The realization of NW tunnel diodes in both InP/GaInP and GaInP/InP configurations represent an opportunity for the use of NW tandem solar cells, whose efficiency is independent of the growth order of the different materials, increasing the flexibility regarding dopant incorporation polarity. [Figure not available: see fulltext.]
  •  
3.
  • Berg, Alexander, et al. (författare)
  • Growth of wurtzite AlxGa1-xP nanowire shells and characterization by Raman spectroscopy
  • 2017
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The phonon energies of AlGaP in wurtzite crystal structure are generally not known, as opposed to their zincblende counterparts, because AlGaP crystallizes in zincblende phase in bulk and thin films structures. However, in nanowires AlGaP can be grown in wurtzite crystal structure. In this work we have grown wurtzite GaP/AlGaP/GaP core-shell nanowires by use of MOVPE. After developing suitable growth conditions, the Al composition was determined by STEM-EDX measurements and the wurtzite AlGaP phonon energies by Raman spectroscopy. Raman measurements show a peak shift with increasing Al composition in the AlGaP shell. We find that the phonon energies for wurtzite AlGaP are slightly lower than for zincblende AlGaP. Our results can be used to determine the Al composition in wurtzite AlGaP by Raman scattering.
  •  
4.
  • Dagyte, Vilgaile, et al. (författare)
  • Time-resolved photoluminescence characterization of GaAs nanowire arrays on native substrate
  • 2017
  • Ingår i: Nanotechnology. - : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:50
  • Tidskriftsartikel (refereegranskat)abstract
    • Time-resolved photoluminescence (TRPL) measurements of nanowires (NWs) are often carried out on broken-off NWs in order to avoid the ensemble effects as well as substrate contribution. However, the development of NW-array solar cells could benefit from non-destructive optical characterization to allow faster feedback and further device processing. With this work, we show that different NW array and substrate spectral behaviors with delay time and excitation power can be used to determine which part of the sample dominates the detected spectrum. Here, we evaluate TRPL characterization of dense periodic as-grown GaAs NW arrays on a p-type GaAs substrate, including a sample with uncapped GaAs NWs and several samples passivated with AlGaAs radial shell of varied composition and thickness. We observe a strong spectral overlap of substrate and NW signals and find that the NWs can absorb part of the substrate luminescence signal, thus resulting in a modified substrate signal. The level of absorption depends on the NW-array geometry, making a deconvolution of the NW signal very difficult. By studying TRPL of substrate-only and as-grown NWs at 770 and 400 nm excitation wavelengths, we find a difference in spectral behavior with delay time and excitation power that can be used to assess whether the signal is dominated by the NWs. We find that the NW signal dominates with 400 nm excitation wavelength, where we observe two different types of excitation power dependence for the NWs capped with high and low Al composition shells. Finally, from the excitation power dependence of the peak TRPL signal, we extract an estimate of background carrier concentration in the NWs.
  •  
5.
  • Hammarberg, Susanna, et al. (författare)
  • High resolution strain mapping of a single axially heterostructured nanowire using scanning X-ray diffraction
  • 2020
  • Ingår i: Nano Research. - : Springer Science and Business Media LLC. - 1998-0124 .- 1998-0000. ; 13:9, s. 2460-2468
  • Tidskriftsartikel (refereegranskat)abstract
    • Axially heterostructured nanowires are a promising platform for next generation electronic and optoelectronic devices. Reports based on theoretical modeling have predicted more complex strain distributions and increased critical layer thicknesses than in thin films, due to lateral strain relaxation at the surface, but the understanding of the growth and strain distributions in these complex structures is hampered by the lack of high-resolution characterization techniques. Here, we demonstrate strain mapping of an axially segmented GaInP-InP 190 nm diameter nanowire heterostructure using scanning X-ray diffraction. We systematically investigate the strain distribution and lattice tilt in three different segment lengths from 45 to 170 nm, obtaining strain maps with about 10−4 relative strain sensitivity. The experiments were performed using the 90 nm diameter nanofocus at the NanoMAX beamline, taking advantage of the high coherent flux from the first diffraction limited storage ring MAX IV. The experimental results are in good agreement with a full simulation of the experiment based on a three-dimensional (3D) finite element model. The largest segments show a complex profile, where the lateral strain relaxation at the surface leads to a dome-shaped strain distribution from the mismatched interfaces, and a change from tensile to compressive strain within a single segment. The lattice tilt maps show a cross-shaped profile with excellent qualitative and quantitative agreement with the simulations. In contrast, the shortest measured InP segment is almost fully adapted to the surrounding GaInP segments. [Figure not available: see fulltext.].
  •  
6.
  •  
7.
  • Jain, Vishal, et al. (författare)
  • Bias-dependent spectral tuning in InP nanowire-based photodetectors
  • 2017
  • Ingår i: Nanotechnology. - Bristol : IOP Publishing. - 0957-4484 .- 1361-6528. ; 28:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanowire array ensembles contacted in a vertical geometry are extensively studied and considered strong candidates for next generations of industrial scale optoelectronics. Key challenges in this development deal with optimization of the doping profile of the nanowires and the interface between nanowires and transparent top contact. Here we report on photodetection characteristics associated with doping profile variations in InP nanowire array photodetectors. Bias-dependent tuning of the spectral shape of the responsivity is observed which is attributed to a Schottky-like contact at the nanowire-ITO interface. Angular dependent responsivity measurements, compared with simulated absorption spectra, support this conclusion. Furthermore, electrical simulations unravel the role of possible self-gating effects in the nanowires induced by the ITO/SiO x wrap-gate geometry. Finally, we discuss possible reasons for the observed low saturation current at large forward biases.
  •  
8.
  • Jain, Vishal, et al. (författare)
  • InP/InAsP Nanowire-Based Spatially Separate Absorption and Multiplication Avalanche Photodetectors
  • 2017
  • Ingår i: ACS Photonics. - Washington : American Chemical Society (ACS). - 2330-4022. ; 4:11, s. 2693-2698
  • Tidskriftsartikel (refereegranskat)abstract
    • Avalanche photodetectors (APDs) are key components in optical communication systems due to their increased photocurrent gain and short response time as compared to conventional photodetectors. A detector design where the multiplication region is implemented in a large band gap material is desired to avoid detrimental Zener tunneling leakage currents, a concern otherwise in smaller band gap materials required for absorption at 1.3/1.55 μm. Self-assembled III-V semiconductor nanowires offer key advantages such as enhanced absorption due to optical resonance effects, strain-relaxed heterostructures, and compatibility with mainstream silicon technology. Here, we present electrical and optical characteristics of single InP and InP/InAsP nanowire APD structures. Temperature-dependent breakdown characteristics of p+-n-n+ InP nanowire devices were investigated first. A clear trap-induced shift in breakdown voltage was inferred from I-V measurements. An improved contact formation to the p+-InP segment was observed upon annealing, and its effect on breakdown characteristics was investigated. The band gap in the absorption region was subsequently varied from pure InP to InAsP to realize spatially separate absorption and multiplication APDs in heterostructure nanowires. In contrast to the homojunction APDs, no trap-induced shifts were observed for the heterostructure APDs. A gain of 12 was demonstrated for selective optical excitation of the InAsP segment. Additional electron-beam-induced current measurements were carried out to investigate the effect of local excitation along the nanowire on the I-V characteristics. Simulated band profiles and electric field distributions support our interpretation of the experiments. Our results provide important insight for optimization of avalanche photodetector devices based on III-V nanowires.
  •  
9.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large Area Photodetectors at 1.3/1.55 μm Based on InP/InAsP NWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Optical communication systems benefit a lot from APDs due to their increased photocurrent gain as compared to conventional photodetectors. An avalanche region in a high bandgap material is especially useful to avoid the tunneling leakage currents in smaller bandgap materials needed for absorption at 1.3/1.55 µm wavelengths. Self-assembled III-V semiconductor nanowires have a key advantage owing to the enhanced absorption due to optical resonance effects and the strain relaxation in NWs, thus facilitating monolithic integration of different heterostructures on cheaper substrates. Here, we present electrical and optical results from large ensembles of InP/InAsP NWs, axially grown on p+ InP substrates. The NW base consists of an InP p-n junction acting as the avalanche region followed by an InP/InAsP absorption region, and ending with a top InP n+-segment. The 130nm diameter NW arrays are contacted in a vertical geometry using SiO2 as the insulating layer and ITO as the top contact. The n-doping in the avalanche region is varied to study it’s influence on the avalanche mechanism. Also the bandgap in the absorption region is varied from pure InP to smaller bandgap InAsP by varying the As content. Clear interband signals from different crystal phases of InP/InAsP are observed in photocurrent spectroscopy. Moreover, the photocurrent spectra are consistent with spatially resolved photoluminescence signals. We also report on polarization and angle dependent photocurrent response of the NW array.
  •  
10.
  • Jain, Vishal, 1989-, et al. (författare)
  • Large area photodetectors based on InP NWs with InAs/InAsP QWs
  • 2014
  • Konferensbidrag (refereegranskat)abstract
    • Focal plane arrays have a widespread use in infrared imaging, which often rely on cryogenic cooling to curtail the dark current level necessary for a reasonable signal-to-noise ratio. Quantum well (QW) infrared photodetectors are uniform over large areas, but suffer from a severe drawback related to the selection rules for intersubband absorption. An interesting alternative is self-assembled III-V nanowires offering a key advantage owing to the enhanced absorption by optical resonance effects and strain relaxation.We present electrical and optical results from large ensembles of n+-i-n+ InP NWs, axially grown on InP substrates with InAs/InAsP QWs embedded within the i-segment, designed for both interband and intersubband detection. The NWs are contacted in a vertical geometry using 50 nm SiO2 as the insulating layer and ITO as the top contact. We first investigate the crystal quality of the InAsP QWs grown in 180 nm diameter NWs, using PL, CL and TEM. To achieve more abrupt InAs/InAsP QWs, we grow 130 nm diameter NWs and deplete the In present in the Au catalysts. The effect of n-doping on the device performance is studied by fabricating two different NW geometries, with and without an n+-segment grown before the nominal i-segment in the NW. In addition, the position of the QWs within the i-segment is varied to further scrutinize effects related to doping and crystal structure. Finally, we report spectrally resolved photocurrent results from the QWs in the near-infrared region and discuss about the further developments needed for intersubband detection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 72
Typ av publikation
tidskriftsartikel (62)
konferensbidrag (8)
forskningsöversikt (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (71)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Borgström, Magnus T. (58)
Samuelson, Lars (26)
Heurlin, Magnus (18)
Hrachowina, Lukas (14)
Otnes, Gaute (14)
Wallentin, Jesper (13)
visa fler...
Borgström, Magnus (12)
Zeng, Xulu (11)
Barrigón, Enrique (11)
Seifert, Werner (9)
Pettersson, Håkan, 1 ... (8)
Wernersson, Lars-Eri ... (7)
Yartsev, Arkady (7)
Deppert, Knut (6)
Pettersson, Håkan (6)
Berg, Alexander (6)
Gustafsson, Anders (6)
Zou, Xianshao (6)
Zhang, Wei (5)
Dagyte, Vilgaile (5)
Nowzari, Ali (5)
Prinz, Christelle N. (4)
Anttu, Nicklas (4)
Karimi, Mohammad (4)
Lindgren, David (4)
Mikkelsen, Anders (4)
Bryllert, Tomas (4)
Timm, Rainer (4)
Capasso, Federico (4)
Jain, Vishal, 1989- (4)
Björling, Alexander (4)
Maximov, Ivan (3)
Pietzonka, I (3)
Johansson, Jonas (3)
Adham, Kristi (3)
Alcer, David (3)
Adolfsson, Karl (3)
Pistol, Mats Erik (3)
Troian, Andrea (3)
Abariute, Laura (2)
Graczyk, Mariusz (2)
Zhao, Yue (2)
Hessman, Dan (2)
Lehmann, Sebastian (2)
Tirrito, Matteo (2)
Mårtensson, Thomas (2)
Storm, Kristian (2)
Dick Thelander, Kimb ... (2)
Zhang, Yuwei (2)
Ek, Martin (2)
visa färre...
Lärosäte
Lunds universitet (66)
Högskolan i Halmstad (14)
Uppsala universitet (1)
Chalmers tekniska högskola (1)
Språk
Engelska (72)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (69)
Teknik (46)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy