SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borrero J. M.) "

Sökning: WFRF:(Borrero J. M.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Bellot Rubio, L. R., et al. (författare)
  • Accurate Atomic Parameters from the Solar Spectrum
  • 2003
  • Ingår i: Frontiers of High Resolution Spectroscopy, 25th meeting of the IAU, Joint Discussion 20. ; , s. p. 16-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
4.
  •  
5.
  • Kaithakkal, Anjali J., et al. (författare)
  • A reconnection-driven magnetic flux cancellation and a quiet Sun Ellerman bomb
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 521:3, s. 3882-3897
  • Tidskriftsartikel (refereegranskat)abstract
    • The focus of this investigation is to quantify the conversion of magnetic to thermal energy initiated by a quiet Sun cancellation event and to explore the resulting dynamics from the interaction of the opposite-polarity magnetic features. We used imaging spectroscopy in the Hα line, along with spectropolarimetry in the Fe I 6173 Å and Ca II 8542 Å lines from the Swedish Solar Telescope (SST) to study a reconnection-related cancellation and the appearance of a quiet Sun Ellerman bomb (QSEB). We observed, for the first time, QSEB signature in both the wings and core of the Fe I 6173 Å line. We also found that, at times, the Fe I line-core intensity reaches higher values than the quiet Sun continuum intensity. From FIRTEZ-dz inversions of the Stokes profiles in Fe I and Ca II lines, we found enhanced temperature, with respect to the quiet Sun values, at the photospheric (log τc  = −1.5; ∼1000 K) and lower chromospheric heights (log τc  = −4.5; ∼360 K). From the calculation of total magnetic energy and thermal energy within these two layers, it was confirmed that the magnetic energy released during the flux cancellation can support heating in the aforesaid height range. Further, the temperature stratification maps enabled us to identify cumulative effects of successive reconnection on temperature pattern, including recurring temperature enhancements. Similarly, Doppler velocity stratification maps revealed impacts on plasma flow pattern, such as a sudden change in the flow direction. 
  •  
6.
  • Qian, J., et al. (författare)
  • Sequence dependence of isothermal DNA amplification via EXPAR
  • 2012
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 40:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Isothermal nucleic acid amplification is becoming increasingly important for molecular diagnostics. Therefore, new computational tools are needed to facilitate assay design. In the isothermal EXPonential Amplification Reaction (EXPAR), template sequences with similar thermodynamic characteristics perform very differently. To understand what causes this variability, we characterized the performance of 384 template sequences, and used this data to develop two computational methods to predict EXPAR template performance based on sequence: a position weight matrix approach with support vector machine classifier, and RELIEF attribute evaluation with Nave Bayes classification. The methods identified well and poorly performing EXPAR templates with 6770 sensitivity and 7780 specificity. We combined these methods into a computational tool that can accelerate new assay design by ruling out likely poor performers. Furthermore, our data suggest that variability in template performance is linked to specific sequence motifs. Cytidine, a pyrimidine base, is over-represented in certain positions of well-performing templates. Guanosine and adenosine, both purine bases, are over-represented in similar regions of poorly performing templates, frequently as GA or AG dimers. Since polymerases have a higher affinity for purine oligonucleotides, polymerase binding to GA-rich regions of a single-stranded DNA template may promote non-specific amplification in EXPAR and other nucleic acid amplification reactions. © 2012 The Author(s).
  •  
7.
  • Borrero, J. M., et al. (författare)
  • Combining magneto-hydrostatic constraints with Stokes profiles inversions. II. Application to Hinode/SP observations
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 647
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Inversion techniques applied to the radiative transfer equation for polarized light are capable of inferring the physical parameters in the solar atmosphere (temperature T, magnetic field B, and line-of-sight velocity v(los)) from observations of the Stokes vector (i.e., spectropolarimetric observations) in spectral lines. Inferences are usually performed in the (x, y, tau (c)) domain, where tau (c) refers to the optical-depth scale. Generally, their determination in the (x, y, z) volume is not possible due to the lack of a reliable estimation of the gas pressure, particularly in regions of the solar surface harboring strong magnetic fields.Aims. We aim to develop a new inversion code capable of reliably inferring the physical parameters in the (x, y, z) domain.Methods. We combine, in a self-consistent way, an inverse solver for the radiative transfer equation (Firtez-DZ) with a solver for the magneto-hydrostatic equilibrium, which derives realistic values of the gas pressure by taking the magnetic pressure and tension into account.Results. We test the correct behavior of the newly developed code with spectropolarimetric observations of two sunspots recorded with the spectropolarimeter (SP) instrument on board the Hinode spacecraft, and we show how the physical parameters are inferred in the (x, y, z) domain, with the Wilson depression of the sunspots arising as a natural consequence of the force balance. In particular, our approach significantly improves upon previous determinations that were based on semiempirical models.Conclusions. Our results open the door for the possibility of calculating reliable electric currents in three dimensions, j(x, y, z), in the solar photosphere. Further consistency checks would include a comparison with other methods that have recently been proposed and which achieve similar goals.
  •  
8.
  • Borrero, J. M., et al. (författare)
  • Combining magneto-hydrostatic constraints with Stokes profiles inversions III. Uncertainty in the inference of electric currents
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Electric currents play an important role in the energy balance of the plasma in the solar atmosphere. They are also indicative of non-potential magnetic fields and magnetic reconnection. Unfortunately, the direct measuring of electric currents has traditionally been riddled with inaccuracies.Aims. We study how accurately we can infer electric currents under different scenarios.Methods. We carry out increasingly complex inversions of the radiative transfer equation for polarized light applied to Stokes profiles synthesized from radiative three-dimensional magnetohydrodynamic (MHD) simulations. The inversion yields the magnetic field vector, B, from which the electric current density, j, is derived by applying Ampere’s law.Results. We find that the retrieval of the electric current density is only slightly affected by photon noise or spectral resolution. However, the retrieval steadily improves as the Stokes inversion becomes increasingly elaborated. In the least complex case (a Milne-Eddington-like inversion applied to a single spectral region), it is possible to determine the individual components of the electric current density (jx, jy, jz) with an accuracy of σ = 0.90 − 1.00 dex, whereas the modulus (∥j∥) can only be determined with σ = 0.75 dex. In the most complicated case (with multiple spectral regions, a large number of nodes, Tikhonov vertical regularization, and magnetohydrostatic equilibrium), these numbers improve to σ = 0.70 − 0.75 dex for the individual components and σ = 0.5 dex for the modulus. Moreover, in regions where the magnetic field is above 300 gauss, ∥j∥ can be inferred with an accuracy of σ = 0.3 dex. In general, the x and y components of the electric current density are retrieved slightly better than the z component. In addition, the modulus of the electric current density is the best retrieved parameter of all, and thus it can potentially be used to detect regions of enhanced Joule heating.Conclusions. The fact that the accuracy does not worsen with decreasing spectral resolution or increasing photon noise, and instead increases as the Stokes inversion complexity grows, suggests that the main source of errors in the determination of electric currents is the lack of realism in the inversion model employed to determine variations in the magnetic field along the line of sight at scales smaller than the photon mean-free path, along with the intrinsic limitations of the model due to radiative transfer effects.
  •  
9.
  • Fischer, C. E., et al. (författare)
  • Interaction of Magnetic Fields with a Vortex Tube at Solar Subgranular Scale
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 903:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Using high-resolution spectropolarimetric data recorded with the Swedish 1 m Solar Telescope, we have identified several instances of granular lanes traveling into granules. These are believed to be the observational signature of underlying tubes of vortical flow with their axis oriented parallel to the solar surface. Associated with these horizontal vortex tubes, we detect in some cases a significant signal in linear polarization, located at the trailing dark edge of the granular lane. The linear polarization appears at a later stage of the granular lane development, and is flanked by patches of circular polarization. Stokes inversions show that the elongated patch of linear polarization signal arises from the horizontal magnetic field aligned with the granular lane. We analyze snapshots of a magnetohydrodynamic numerical simulation and find cases in which the horizontal vortex tube of the granular lane redistributes and transports the magnetic field to the solar surface causing a polarimetric signature similar to what is observed. We thus witness a mechanism capable of transporting magnetic flux to the solar surface within granules. This mechanism is probably an important component of the small-scale dynamo supposedly acting at the solar surface and generating the quiet-Sun magnetic field.
  •  
10.
  • Pastor Yabar, Adur, et al. (författare)
  • Inference of electric currents in the solar photosphere
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Despite their importance, routine and direct measurements of electric currents, j, in the solar atmosphere have generally not been possible.Aims. We aim at demonstrating the capabilities of a newly developed method for determining electric currents in the solar photosphere.Methods. We employ three-dimensional radiative magneto-hydrodynamic (MHD) simulations to produce synthetic Stokes profiles in several spectral lines with a spatial resolution similar to what the newly operational 4-meter Daniel K. Inouye Solar Telescope solar telescope should achieve. We apply a newly developed inversion method of the polarized radiative transfer equation with magneto-hydrostatic (MHS) constraints to infer the magnetic field vector in the three-dimensional Cartesian domain, B(x,y,z), from the synthetic Stokes profiles. We then apply Ampere's law to determine the electric currents, j, from the inferred magnetic field, B(x,z), and compare the results with the electric currents present in the original MHD simulation.Results. We show that the method employed here is able to attain reasonable reliability (close to 50% of the cases are within a factor of two, and this increases to 60%-70% for pixels with B300 G) in the inference of electric currents for low atmospheric heights (optical depths at 500 nm tau(5)is an element of[1, 0.1]) regardless of whether a small or large number of spectral lines are inverted. Above these photospheric layers, the method's accuracy strongly deteriorates as magnetic fields become weaker and as the MHS approximation becomes less accurate. We also find that the inferred electric currents have a floor value that is related to low-magnetized plasma, where the uncertainty in the magnetic field inference prevents a sufficiently accurate determination of the spatial derivatives.Conclusions. We present a method that allows the inference of the three components of the electric current vector at deep atmospheric layers (photospheric layers) from spectropolarimetric observations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy