SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borry P) "

Sökning: WFRF:(Borry P)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borry, P., et al. (författare)
  • Preconceptional genetic carrier testing and the commercial offer directly-to-consumers
  • 2011
  • Ingår i: Hum Reprod. - : Oxford University Press (OUP). ; 26:5, s. 972-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, a number of commercial companies are offering preconceptional carrier tests directly-to-consumers. This offer raises a number of concerns and issues above and beyond those encountered with preconceptional tests offered within the traditional health care setting. In order to bring some of these issues to light and to initiate dialogue on this topic, this article discusses the following issues: the current offer of preconceptional carrier tests (until the end of 2010) through online commercial companies; the implications for the informed consent procedure and the need for good information; the need for medical supervision and follow-up; and the appropriate use of existing resources. The article concludes with some reflections about the potential sustainability of the offer of preconceptional carrier tests directly-to-consumers.
  •  
2.
  •  
3.
  •  
4.
  • Henneman, L., et al. (författare)
  • Responsible implementation of expanded carrier screening
  • 2016
  • Ingår i: Eur J Hum Genet. - : Springer Science and Business Media LLC. ; 24:6, s. E1-E12
  • Tidskriftsartikel (refereegranskat)abstract
    • This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.
  •  
5.
  • Howard, Heidi Carmen, et al. (författare)
  • Whole-genome sequencing in newborn screening? A statement on the continued importance of targeted approaches in newborn screening programmes
  • 2015
  • Ingår i: Eur J Hum Genet. - : Springer Science and Business Media LLC. ; 23:12, s. 1593-1600
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent and refinement of sequencing technologies has resulted in a decrease in both the cost and time needed to generate data on the entire sequence of the human genome. This has increased the accessibility of using whole-genome sequencing and whole-exome sequencing approaches for analysis in both the research and clinical contexts. The expectation is that more services based on these and other high-throughput technologies will become available to patients and the wider population. Some authors predict that sequencing will be performed once in a lifetime, namely, shortly after birth. The Public and Professional Policy Committee of the European Society of Human Genetics, the Human Genome Organisation Committee on Ethics, Law and Society, the PHG Foundation and the P3G International Paediatric Platform address herein the important issues and challenges surrounding the potential use of sequencing technologies in publicly funded newborn screening (NBS) programmes. This statement presents the relevant issues and culminates in a set of recommendations to help inform and guide scientists and clinicians, as well as policy makers regarding the necessary considerations for the use of genome sequencing technologies and approaches in NBS programmes. The primary objective of NBS should be the targeted analysis and identification of gene variants conferring a high risk of preventable or treatable conditions, for which treatment has to start in the newborn period or in early childhood.
  •  
6.
  • Kalokairinou, L, et al. (författare)
  • Legislation of direct-to-consumer genetic testing in Europe: : a fragmented regulatory landscape
  • 2018
  • Ingår i: Journal of Community Genetics. - : Springer Science and Business Media LLC. - 1868-310X .- 1868-6001. ; 9:2, s. 117-132
  • Forskningsöversikt (refereegranskat)abstract
    • Despite the increasing availability of direct-to-consumer (DTC) genetic testing, it is currently unclear how such services are regulated in Europe, due to the lack of EU or national legislation specifically addressing this issue. In this article, we provide an overview of laws that could potentially impact the regulation of DTC genetic testing in 26 European countries, namely Austria, Belgium, Cyprus, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, the Netherlands and the United Kingdom. Emphasis is placed on provisions relating to medical supervision, genetic counselling and informed consent. Our results indicate that currently there is a wide spectrum of laws regarding genetic testing in Europe. There are countries (e.g. France and Germany) which essentially ban DTC genetic testing, while in others (e.g. Luxembourg and Poland) DTC genetic testing may only be restricted by general laws, usually regarding health care services and patients’ rights.
  •  
7.
  •  
8.
  • Severin, F., et al. (författare)
  • Points to consider for prioritizing clinical genetic testing services : a European consensus process oriented at accountability for reasonableness
  • 2015
  • Ingår i: Eur J Hum Genet. - : Springer Science and Business Media LLC. ; 23:6, s. 729-735
  • Tidskriftsartikel (refereegranskat)abstract
    • Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set of prioritization criteria would be desirable. A decision process following the accountability for reasonableness framework was undertaken, including a multidisciplinary EuroGentest/PPPC-ESHG workshop to develop shared prioritization criteria. Resources are currently too limited to fund all the beneficial genetic testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit of information for important life decisions, benefit for other people apart from the person tested and the patient-specific likelihood of being affected by the condition tested for. It may be subject to a finite time window. Health need includes the severity of the condition tested for and its progression at the time of testing. Further discussion and better evidence is needed before clearly defined recommendations can be made or a prioritization algorithm proposed. To our knowledge, this is the first time a clinical society has initiated a decision process about health-care prioritization on a European level, following the principles of accountability for reasonableness. We provide points to consider to stimulate this debate across the EU and to serve as a reference for improving patient management.
  •  
9.
  •  
10.
  • Borry, P., et al. (författare)
  • Is There a Right Time to Know? The Right Not to Know and Genetic Testing in Children
  • 2014
  • Ingår i: J Law Med Ethics. ; 42:1, s. 19-27
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing implementation of next-generation sequencing technologies in the clinical context and the expanding commercial offer of genetic tests directly-toconsumers has increased the availability of previously inaccessible genetic information. A particular concern in both situations is how the volume of novel information will affect the processing of genetic and genomic information from minors. For minors, it is argued that in the provision of genetic testing, their "right not to know" should be respected as much as possible. Testing a minor early in life eliminates the possibility for the minor to make use of his or her "right not to know." The article discusses the theoretical underpinnings of the right not know, analyzes reasons why various direct-to-consumer companies process samples from minors, and discusses the right not to know in relation to common complex disorders in a pediatric population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy