SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Borvik Tore) "

Sökning: WFRF:(Borvik Tore)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Daehli, Lars Edvard Bryhni, et al. (författare)
  • Unit cell simulations and porous plasticity modelling for strongly anisotropic FCC metals
  • 2017
  • Ingår i: European journal of mechanics. A, Solids. - : Elsevier. - 0997-7538 .- 1873-7285. ; 65, s. 360-383
  • Tidskriftsartikel (refereegranskat)abstract
    • The macroscopic behaviour of anisotropic porous solids made from an aggregate of spherical voids embedded in a plastically anisotropic matrix material is investigated by means of unit cell simulations. Plastic yielding of the polycrystalline matrix is governed by the anisotropic yield criterion Yld2004-18p. Generic texture components for face-centred cubic crystals resembling those that typically emerge during rolling and annealing processes are applied in the study. A numerical method for systematic prescription of external stress states is presented and employed in the unit cell calculations. To preclude shear effects in the unit cell model, the material symmetry axes are restricted to coincide with the principal stress directions. This excludes the possibility to properly study the ductile failure mechanism and the current work is thus mainly concerned with the void growth phase. Various stress states ranging from biaxial tension to highly constrained regions in the vicinity of crack tips are employed in the study. The numerical results demonstrate that the matrix anisotropy has a marked effect on the unit cell response, both in terms of void growth and stress-strain curves. Furthermore, the void shape evolves quite differently depending upon the direction of the major principal stress relative to the material axes. A heuristic extension of the Gurson model that incorporates matrix plastic anisotropy is presented and subsequently used to describe the constitutive behaviour of the porous ductile solid. Numerical data from the unit cell analyses are used as target curves in the calibration process of the porous plasticity model. A sequential least-square optimization procedure is invoked to minimize the overall discrepancy between the unit cell calculations and the homogenized response of the plastically anisotropic porous solid for all the imposed stress states. The anisotropic porous plasticity model demonstrates predictive capabilities for the range of stress states covered in this study.
  •  
2.
  • Espeseth, Vetle, et al. (författare)
  • A numerical study of a size-dependent finite-element based unit cell with primary and secondary voids
  • 2021
  • Ingår i: Journal of the mechanics and physics of solids. - : Elsevier BV. - 0022-5096 .- 1873-4782. ; 157
  • Tidskriftsartikel (refereegranskat)abstract
    • Aluminium alloys contain various types of intermetallic particles with different sizes, such as constituent particles and dispersoids. The main mechanism of ductile fracture in these materials is assumed to be nucleation of voids around the constituent particles, which grow during plastic deformation and eventually coalesce, resulting in material failure. The role of the dispersoids is less certain, but they are assumed to contribute in the last stages of the ductile fracture process. While the constituent particles are in the range of a couple of microns, the size of dispersoids is normally one order of magnitude smaller. To disclose the possible effects of the dispersoids on the ductile fracture process in aluminium alloys, this paper presents a numerical study of a finiteelement based unit cell, which consists of a single spherical void embedded in a matrix material represented by a porous plasticity model with void size effects. Accordingly, the single, primary void of the unit cell is assumed to have nucleated on a constituent particle, whereas the matrix porosity is assumed to account for secondary, smaller voids nucleated on dispersoids. The effects of the intrinsic length scale of the matrix material on the void growth and coalescence are studied for a range of stress states, while the initial primary and secondary void volume fractions are kept constant. The secondary voids have a substantial effect on the behaviour of the unit cell when their size is large compared to the intrinsic material length scale, but they were not found to influence the growth of the primary void. Instead, the growth of the secondary voids promotes strain softening and influences the coalescence process of the primary voids, which gradually changes mode from internal necking to loss of load-carrying capacity of the inter-void ligament.
  •  
3.
  • Tomstad, Asle Joachim, et al. (författare)
  • On the influence of stress state on ductile fracture of two 6000-series aluminium alloys with different particle content
  • 2023
  • Ingår i: International Journal of Solids and Structures. - : Elsevier BV. - 0020-7683 .- 1879-2146. ; 269, s. 112149-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tension-torsion tests were conducted on two 6000-series aluminium alloys with different area fraction of con-stituent particles. The two alloys, denoted alloy A and B, have previously been characterized and found to have similar matrix material, albeit the three times higher area fraction of constituent particles in alloy B than in alloy A. Single notch tube specimens of the two alloys were subjected to fifteen proportional load paths by varying the ratio of axial force and twisting moment, probing stress states from torsion to plane-strain tension. The overall failure strain in the notch was estimated analytically based on the experimental data, whereas finite element simulations were used to determine the stress and strain fields within the notch region and to estimate the local failure strain. The experiments showed that the increased particle content led to a reduction in the local failure strain of alloy B compared with alloy A that varied from 16% to 60%, depending on the stress state, with an average reduction of 39%. While the overall trend was an increasing failure strain with decreasing stress triaxiality, significant influence of the Lode parameter was observed, and thus the increase was not monotonic. Applying a porous plasticity model, localization analyses were conducted to examine the underlying mechanisms for the complex variation of the failure strain with stress state.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy