SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boschi Donatella) "

Sökning: WFRF:(Boschi Donatella)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pippione, Agnese C., et al. (författare)
  • 4-Hydroxy-N -[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide: A novel inhibitor of the canonical NF-κB cascade
  • 2017
  • Ingår i: MedChemComm. - : Royal Society of Chemistry (RSC). - 2040-2503 .- 2040-2511. ; 8:9, s. 1850-1855
  • Tidskriftsartikel (refereegranskat)abstract
    • The NF-κB signaling pathway is a validated oncological target. Here, we applied scaffold hopping to IMD-0354, a presumed IKKβ inhibitor, and identified 4-hydroxy-N-[3,5-bis(trifluoromethyl)phenyl]-1,2,5-thiadiazole-3-carboxamide (4) as a nM-inhibitor of the NF-κB pathway. However, both 4 and IMD-0354, being potent inhibitors of the canonical NF-κB pathway, were found to be inactive in human IKKβ enzyme assays.
  •  
2.
  • Pippione, Agnese C., et al. (författare)
  • Hydroxyazole scaffold-based Plasmodium falciparum dihydroorotate dehydrogenase inhibitors : Synthesis, biological evaluation and X-ray structural studies
  • 2019
  • Ingår i: European Journal of Medicinal Chemistry. - : Elsevier BV. - 0223-5234 .- 1768-3254. ; 163, s. 266-280
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) has been clinically validated as a target for antimalarial drug discovery, as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. Here, we have identified new hydroxyazole scaffold-based PfDHODH inhibitors belonging to two different chemical series. The first series was designed by a scaffold hopping strategy that exploits the use of hydroxylated azoles. Within this series, the hydroxythiadiazole 3 was identified as the best selective PfDHODH inhibitor (IC50 12.0 μM). The second series was designed by modulating four different positions of the hydroxypyrazole scaffold. In particular, hydroxypyrazoles 7e and 7f were shown to be active in the low μM range (IC50 2.8 and 5.3 μM, respectively). All three compounds, 3, 7e and 7f showed clear selectivity over human DHODH (IC50 > 200 μM), low cytotoxicity, and retained micromolar activity in P. falciparum-infected erythrocytes. The crystallographic structures of PfDHODH in complex with compounds 3 and 7e proved their binding mode, supplying essential data for future optimization of these scaffolds.
  •  
3.
  • Pippione, Agnese Chiara, et al. (författare)
  • Potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors based on the benzoisoxazole moiety: application of a bioisosteric scaffold hopping approach to flufenamic acid.
  • 2018
  • Ingår i: European journal of medicinal chemistry. - : Elsevier BV. - 1768-3254 .- 0223-5234. ; 150, s. 930-945
  • Tidskriftsartikel (refereegranskat)abstract
    • The aldo-keto reductase 1C3 (AKR1C3) isoform plays a vital role in the biosynthesis of androgens and is considered an attractive target in prostate cancer (PCa). No AKR1C3-targeted agent has to date been approved for clinical use. Flufenamic acid and indomethacine are non-steroidal anti-inflammatory drugs known to inhibit AKR1C3 in a non-selective manner as COX off-target effects are also observed. Recently, we employed a scaffold hopping approach to design a new class of potent and selective AKR1C3 inhibitors based on a N-substituted hydroxylated triazole pharmacophore. Following a similar strategy, we designed a new series focused around an acidic hydroxybenzoisoxazole moiety, which was rationalised to mimic the benzoic acid role in the flufenamic scaffold. Through iterative rounds of drug design, synthesis and biological evaluation, several compounds were discovered to target AKR1C3 in a selective manner. The most promising compound of series (6) was found to be highly selective (up to 450-fold) for AKR1C3 over the 1C2 isoform with minimal COX1 and COX2 off-target effects. Other inhibitors were obtained modulating the best example of hydroxylated triazoles we previously presented. In cell-based assays, the most promising compounds of both series reduced the cell proliferation, prostate specific antigen (PSA) and testosterone production in AKR1C3-expressing 22RV1 prostate cancer cells and showed synergistic effect when assayed in combination with abiraterone and enzalutamide. Structure determination of AKR1C3 co-crystallized with one representative compound from each of the two series clearly identified both compounds in the androstenedione binding site, hence supporting the biochemical data.
  •  
4.
  • Sainas, Stefano, et al. (författare)
  • Design, synthesis, biological evaluation and X-ray structural studies of potent human dihydroorotate dehydrogenase inhibitors based on hydroxylated azole scaffolds
  • 2017
  • Ingår i: European Journal of Medicinal Chemistry. - : Elsevier BV. - 0223-5234 .- 1768-3254. ; 129, s. 287-302
  • Tidskriftsartikel (refereegranskat)abstract
    • A new generation of potent hDHODH inhibitors designed by a scaffold-hopping replacement of the quinolinecarboxylate moiety of brequinar, one of the most potent known hDHODH inhibitors, is presented here. Their general structure is characterized by a biphenyl moiety joined through an amide bridge with an acidic hydroxyazole scaffold (hydroxylated thiadiazole, pyrazole and triazole). Molecular modelling suggested that these structures should adopt a brequinar-like binding mode involving interactions with subsites 1, 2 and 4 of the hDHODH binding site. Initially, the inhibitory activity of the compounds was studied on recombinant hDHODH. The most potent compound of the series in the enzymatic assays was the thiadiazole analogue 4 (IC5016 nM). The activity was found to be dependent on the fluoro substitution pattern at the biphenyl moiety as well as on the choice/substitution of the heterocyclic ring. Structure determination of hDHODH co-crystallized with one representative compound from each series (4, 5 and 6) confirmed the brequinar-like binding mode as suggested by modelling. The specificity of the observed effects of the compound series was tested in cell-based assays for antiproliferation activity using Jurkat cells and PHA-stimulated PBMC. These tests were also verified by addition of exogenous uridine to the culture medium. In particular, the triazole analogue 6 (IC50against hDHODH: 45 nM) exerted potent in vitro antiproliferative and immunosuppressive activity without affecting cell survival.
  •  
5.
  • Sainas, Stefano, et al. (författare)
  • Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold : SAR of the Aryloxyaryl Moiety
  • 2022
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 65:19, s. 12701-12724
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, human dihydroorotate dehydrogenase inhibitors have been associated with acute myelogenous leukemia as well as studied as potent host targeting antivirals. Starting from MEDS433 (IC50 1.2 nM), we kept improving the structure-activity relationship of this class of compounds characterized by 2-hydroxypyrazolo[1,5-a]pyridine scaffold. Using an in silico/crystallography supported design, we identified compound 4 (IC50 7.2 nM), characterized by the presence of a decorated aryloxyaryl moiety that replaced the biphenyl scaffold, with potent inhibition and pro-differentiating abilities on AML THP1 cells (EC50 74 nM), superior to those of brequinar (EC50 249 nM) and boosted when in combination with dipyridamole. Finally, compound 4 has an extremely low cytotoxicity on non-AML cells as well as MEDS433; it has shown a significant antileukemic activity in vivo in a xenograft mouse model of AML.
  •  
6.
  • Sainas, Stefano, et al. (författare)
  • Targeting Acute Myelogenous Leukemia Using Potent Human Dihydroorotate Dehydrogenase Inhibitors Based on the 2-Hydroxypyrazolo[1,5- a]pyridine Scaffold : SAR of the Biphenyl Moiety
  • 2021
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 64:9, s. 5404-5428
  • Tidskriftsartikel (refereegranskat)abstract
    • The connection with acute myelogenous leukemia (AML) of dihydroorotate dehydrogenase (hDHODH), a key enzyme in pyrimidine biosynthesis, has attracted significant interest from pharma as a possible AML therapeutic target. We recently discovered compound 1, a potent hDHODH inhibitor (IC50 = 1.2 nM), able to induce myeloid differentiation in AML cell lines (THP1) in the low nM range (EC50 = 32.8 nM) superior to brequinar's phase I/II clinical trial (EC50 = 265 nM). Herein, we investigate the 1 drug-like properties observing good metabolic stability and no toxic profile when administered at doses of 10 and 25 mg/kg every 3 days for 5 weeks (Balb/c mice). Moreover, in order to identify a backup compound, we investigate the SAR of this class of compounds. Inside the series, 17 is characterized by higher potency in inducing myeloid differentiation (EC50 = 17.3 nM), strong proapoptotic properties (EC50 = 20.2 nM), and low cytotoxicity toward non-AML cells (EC30(Jurkat) > 100 μM).
  •  
7.
  • Sainas, Stefano, et al. (författare)
  • Targeting myeloid differentiation using potent 2-hydroxypyrazolo[1,5-a]pyridine scaffold-based human dihydroorotate dehydrogenase (hDHODH) inhibitors.
  • 2018
  • Ingår i: Journal of medicinal chemistry. - : American Chemical Society (ACS). - 1520-4804 .- 0022-2623. ; 61:14, s. 6034-6055
  • Tidskriftsartikel (refereegranskat)abstract
    • Human dihydroorotate dehydrogenase (hDHODH) catalyzes the rate-limiting step in de novo pyrimidine biosynthesis, the conversion of dihydroorotate to orotate. hDHODH has recently been found to be associated with acute myelogenous leukemia, a disease for which the standard of intensive care has not changed over decades. This work presents a novel class of hDHODH inhibitors, which are based on an unusual carboxylic group bioisostere 2-hydroxypyrazolo[1,5-a]pyridine, that has been designed starting from brequinar, one of the most potent hDHODH inhibitors. A combination of structure-based and ligand-based strategies produced compound 4, which shows brequinar-like hDHODH potency in vitro and is superior in terms of cytotoxicity and immunosuppression. Compound 4 also restores myeloid differentiation in leukemia cell lines at concentrations that are one log digit lower than those achieved in experiments with brequinar. This paper reports the design, synthesis, SAR, X-ray crystallography, biological assays and physicochemical characterization of the new class of hDHODH inhibitors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy