SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bosma Tom) "

Sökning: WFRF:(Bosma Tom)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bosma, Tom, et al. (författare)
  • Broadband single-mode planar waveguides in monolithic 4H-SiC
  • 2022
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 131:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Color-center defects in silicon carbide promise opto-electronic quantum applications in several fields, such as computing, sensing, and communication. In order to scale down and combine these functionalities with the existing silicon device platforms, it is crucial to consider SiC integrated optics. In recent years, many examples of SiC photonic platforms have been shown, like photonic crystal cavities, film-on-insulator waveguides, and micro-ring resonators. However, all these examples rely on separating thin films of SiC from substrate wafers. This introduces significant surface roughness, strain, and defects in the material, which greatly affects the homogeneity of the optical properties of color centers. Here, we present and test a method for fabricating monolithic single-crystal integrated-photonic devices in SiC: tuning optical properties via charge carrier concentration. We fabricated monolithic SiC n-i-n and p-i-n junctions where the intrinsic layer acts as waveguide core, and demonstrate the waveguide functionality for these samples. The propagation losses are below 14 dB/cm. These waveguide types allow for addressing color centers over a broad wavelength range with low strain-induced inhomogeneity of the optical-transition frequencies. Furthermore, we expect that our findings open the road to fabricating waveguides and devices based on p-i-n junctions, which will allow for integrated electrostatic and radio frequency control together with high-intensity optical control of defects in silicon carbide.
  •  
2.
  • Bosma, Tom, et al. (författare)
  • Identification and tunable optical coherent control of transition-metal spins in silicon carbide
  • 2018
  • Ingår i: NPJ QUANTUM INFORMATION. - : SPRINGERNATURE. - 2056-6387. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Color centers in wide-bandgap semiconductors are attractive systems for quantum technologies since they can combine long-coherent electronic spin and bright optical properties. Several suitable centers have been identified, most famously the nitrogen-vacancy defect in diamond. However, integration in communication technology is hindered by the fact that their optical transitions lie outside telecom wavelength bands. Several transition-metal impurities in silicon carbide do emit at and near telecom wavelengths, but knowledge about their spin and optical properties is incomplete. We present all-optical identification and coherent control of molybdenum-impurity spins in silicon carbide with transitions at near-infrared wavelengths. Our results identify spin S= 1/2 for both the electronic ground and excited state, with highly anisotropic spin properties that we apply for implementing optical control of ground-state spin coherence. Our results show optical lifetimes of similar to 60 ns and inhomogeneous spin dephasing times of similar to 0.3 mu S, establishing relevance for quantum spin-photon interfacing.
  •  
3.
  • Gilardoni, Carmem M., et al. (författare)
  • Spin-relaxation times exceeding seconds for color centers with strong spin-orbit coupling in SiC
  • 2020
  • Ingår i: New Journal of Physics. - : IOP PUBLISHING LTD. - 1367-2630. ; 22:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Spin-active color centers in solids show good performance for quantum technologies. Several transition-metal defects in SiC offer compatibility with telecom and semiconductor industries. However, whether their strong spin-orbit coupling degrades their spin lifetimes is not clear. We show that a combination of a crystal-field with axial symmetry and spin-orbit coupling leads to a suppression of spin-lattice and spin-spin interactions, resulting in remarkably slow spin relaxation. Our optical measurements on an ensemble of Mo impurities in SiC show a spin lifetime T-1 of 2.4 s at 2 K.
  •  
4.
  • Ramezani, Mahdi, et al. (författare)
  • Fusion analysis of first episode depression: Where brain shape deformations meet local composition of tissue
  • 2015
  • Ingår i: NeuroImage. - : ELSEVIER SCI LTD. - 2213-1582. ; 7, s. 114-121
  • Tidskriftsartikel (refereegranskat)abstract
    • Computational neuroanatomical techniques that are used to evaluate the structural correlates of disorders in the brain typically measure regional differences in gray matter or white matter, or measure regional differences in the deformation fields required to warp individual datasets to a standard space. Our aim in this study was to combine measurements of regional tissue composition and of deformations in order to characterize a particular brain disorder (here, major depressive disorder). We use structural Magnetic Resonance Imaging (MRI) data from young adults in a first episode of depression, and from an age- and sex-matched group of non-depressed individuals, and create population gray matter (GM) and white matter (WM) tissue average templates using DARTEL groupwise registration. We obtained GM and WM tissue maps in the template space, along with the deformation fields required to co-register the DARTEL template and the GM and WM maps in the population. These three features, reflecting tissue composition and shape of the brain, were used within a joint independent components analysis (jICA) to extract spatially independent joint sources and their corresponding modulation profiles. Coefficients of the modulation profiles were used to capture differences between depressed and non-depressed groups. The combination of hippocampal shape deformations and local composition of tissue (but neither shape nor local composition of tissue alone) was shown to discriminate reliably between individuals in a first episode of depression and healthy controls, suggesting that brain structural differences between depressed and non-depressed individuals do not simply reflect chronicity of the disorder but arc there from the very outset.
  •  
5.
  • Ramezani, Mahdi, et al. (författare)
  • Temporal-lobe morphology differs between healthy adolescents and those with early-onset of depression
  • 2014
  • Ingår i: NeuroImage. - : Elsevier: Creative Commons / Elsevier. - 2213-1582. ; 6, s. 145-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Major depressive disorder (MDD) has previously been linked to structural changes in several brain regions, particularly in the medial temporal lobes (Bellani, Baiano, Brambilla, 2010; Bellani, Baiano, Brambilla, 2011). This has been determined using voxel-based morphometry, segmentation algorithms, and analysis of shape deformations (Bell-McGinty et al., 2002; Bergouignan et al., 2009; Posener et al., 2003; Vasic et al., 2008; Zhao et al., 2008): these are methods in which information related to the shape and the pose (the size, and anatomical position and orientation) of structures is lost. Here, we incorporate information about shape and pose to measure structural deformation in adolescents and young adults with and without depression (as measured using the Beck Depression Inventory and Diagnostic and Statistical Manual of Mental Disorders criteria). As a hypothesis-generating study, a significance level of p less than 0.05, uncorrected for multiple comparisons, was used, so that subtle morphological differences in brain structures between adolescent depressed individuals and control participants could be identified. We focus on changes in cortical and subcortical temporal structures, and use a multi-object statistical pose and shape model to analyze imaging data from 16 females (aged 16-21) and 3 males (aged 18) with early-onset MDD, and 25 female and 1 male normal control participants, drawn from the same age range. The hippocampus, parahippocampal gyrus, putamen, and superior, inferior and middle temporal gyri in both hemispheres of the brain were automatically segmented using the LONI Probabilistic Brain Atlas (Shattuck et al., 2008) in MNI space. Points on the surface of each structure in the atlas were extracted and warped to each participants structural MRI. These surface points were analyzed to extract the pose and shape features. Pose differences were detected between the two groups, particularly in the left and right putamina, right hippocampus, and left and right inferior temporal gyri. Shape differences were detected between the two groups, particularly in the left hippocampus and in the left and right parahippocampal gyri. Furthermore, pose measures were significantly correlated with BDI score across the whole (clinical and control) sample. Since the clinical participants were experiencing their very first episodes of MDD, morphological alteration in the medial temporal lobe appears to be an early sign of MDD, and is unlikely to result from treatment with antidepressants. Pose and shape measures of morphology, which are not usually analyzed in neuromorphometric studies, appear to be sensitive to depressive symptomatology.
  •  
6.
  • Zwier, Olger V, et al. (författare)
  • Electromagnetically induced transparency in inhomogeneously broadened divacancy defect ensembles in SiC
  • 2022
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 131:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins. In its archetypical form, mainly explored with atomic media, it uses a (near-)homogeneous ensemble of three-level systems, in which two low-energy spin-1/2 levels are coupled to a common optically excited state. We investigate the implementation of EIT with c-axis divacancy color centers in silicon carbide. While this material has attractive properties for quantum device technologies with near-IR optics, implementing EIT is complicated by the inhomogeneous broadening of the optical transitions throughout the ensemble and the presence of multiple ground-state levels. These may lead to darkening of the ensemble upon resonant optical excitation. Here, we show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry. Comparison of our experimental results with a model based on the Lindblad equations indicates that we can create coherences between different sets of two levels all-optically in these systems, with potential impact for RF-free quantum sensing applications. Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors. Published under an exclusive license by AIP Publishing.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy