SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bossart Martin) "

Sökning: WFRF:(Bossart Martin)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bossart, Martin, et al. (författare)
  • Effects on weight loss and glycemic control with SAR441255, a potent unimolecular peptide GLP-1/GIP/GCG receptor triagonist
  • 2022
  • Ingår i: Cell Metabolism. - : CELL PRESS. - 1550-4131 .- 1932-7420. ; 34:1, s. 59-
  • Tidskriftsartikel (refereegranskat)abstract
    • Unimolecular triple incretins, combining the activity of glucagon-like peptide-1 (GLP-1), glucose -dependent insulinotropic polypeptide (GIP), and glucagon (GCG), have demonstrated reduction in body weight and improved glucose control in rodent models. We developed SAR441255, a synthetic peptide agonist of the GLP-1, GCG, and GIP receptors, structurally based on the exendin-4 sequence. SAR441255 displays high potency with balanced activation of all three target receptors. In animal models, metabolic outcomes were superior to results with a dual GLP-1/GCG receptor agonist. Preclinical in vivo positron emission tomography imaging demonstrated SAR441255 binding to GLP-1 and GCG receptors. In healthy subjects, SAR441255 improved glycemic control during a mixed-meal tolerance test and impacted biomarkers for GCG and GIP receptor activation. Single doses of SAR441255 were well tolerated. The results demonstrate that integrating GIP activity into dual GLP-1 and GCG receptor agonism provides improved effects on weight loss and glycemic control while buffering the diabetogenic risk of chronic GCG receptor agonism.
  •  
2.
  • Eriksson, Olof, et al. (författare)
  • Drug Occupancy Assessment at the Glucose-Dependent Insulinotropic Polypeptide Receptor by Positron Emission Tomography
  • 2021
  • Ingår i: Diabetes. - : AMER DIABETES ASSOC. - 0012-1797 .- 1939-327X. ; 70:4, s. 842-853
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeting of the glucose-dependent insulinotropic polypeptide receptor (GIPR) is an emerging strategy in antidiabetic drug development. The aim of this study was to develop a positron emission tomography (PET) radioligand for the GIPR to enable the assessment of target distribution and drug target engagement in vivo. The GIPR-selective peptide S02-GIP was radiolabeled with Ga-68. The resulting PET tracer [Ga-68]S02-GIP-T4 was evaluated for affinity and specificity to human GIPR (huGIPR). The in vivo GIPR binding of [Ga-68]S02-GIP-T4 as well as the occupancy of a drug candidate with GIPR activity were assessed in nonhuman primates (NHPs) by PET. [Ga-68]S02-GIP-T4 bound with nanomolar affinity and high selectivity to huGIPR in overexpressing cells. In vivo, pancreatic binding in NHPs could be dose-dependently inhibited by coinjection of unlabeled S02-GIP-T4. Finally, subcutaneous pretreatment with a high dose of a drug candidate with GIPR activity led to a decreased pancreatic binding of [Ga-68]S02-GIP-T4, corresponding to a GIPR drug occupancy of almost 90%. [Ga-68]S02-GIP-T4 demonstrated a safe dosimetric profile, allowing for repeated studies in humans. In conclusion, [Ga-68]S02-GIP-T4 is a novel PET biomarker for safe, noninvasive, and quantitative assessment of GIPR target distribution and drug occupancy.
  •  
3.
  • Eriksson, Olof, et al. (författare)
  • Glucagonlike Peptide-1 Receptor Imaging in Individuals with Type 2 Diabetes
  • 2022
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 63:5, s. 794-800
  • Tidskriftsartikel (refereegranskat)abstract
    • The glucagonlike peptide-1 receptor (GLP1R) is a gut hormone receptor, intricately linked to regulation of blood glucose homeostasis via several mechanisms. It is an established and emergent drug target in metabolic disease. The PET radioligand 68Ga-DO3A-VS-exendin4 (68Ga-exendin4) has the potential to enable longitudinal studies of GLP1R in the human pancreas.Methods: 68Ga-exendin4 PET/CT examinations were performed on overweight-to-obese individuals with type 2 diabetes (n = 13) as part of a larger target engagement study (NCT03350191). A scanning protocol was developed to optimize reproducibility (target amount of 0.5 MBq/kg [corresponding to peptide amount of <0.2 µg/kg], blood sampling, and tracer stability assessment). The pancreas and abdominal organs were segmented, and binding was correlated with clinical parameters.Results: Uptake of 68Ga-exendin4 in the pancreas, but not in other abdominal tissues, was high but variable between individuals. There was no evidence of self-blocking of GLP1R by the tracer in this protocol, despite the high potency of exendin4. The results showed that a full dynamic scan can be simplified to a short static scan, potentially increasing throughput and reducing patient discomfort. The 68Ga-exendin4 concentration in the pancreas (i.e., GLP1R density) correlated inversely with the age of the individual and tended to correlate positively with body mass index. However, the total GLP1R content in the pancreas did not.Conclusion: In summary, we present an optimized and simplified 68Ga-exendin4 scanning protocol to enable reproducible imaging of GLP1R in the pancreas. 68Ga-exendin4 PET may enable quantification of longitudinal changes in pancreatic GLP1R during the development of type 2 diabetes, as well as target engagement studies of novel glucagonlike peptide-1 agonists.
  •  
4.
  • Eriksson, Olof, et al. (författare)
  • Imaging of the Glucagon Receptor in Subjects with Type 2 Diabetes
  • 2021
  • Ingår i: Journal of Nuclear Medicine. - : SOC NUCLEAR MEDICINE INC. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 62:6, s. 833-838
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the importance of the glucagon receptor (GCGR) in disease and in pharmaceutical drug development, there is a lack of specific and sensitive biomarkers of its activation in humans. The PET radioligand Ga-68-DO3A-VS-Tuna-2 (Ga-68-Tuna-2) was developed to yield a noninvasive imaging marker for GCGR target distribution and drug target engagement in humans. Methods: The biodistribution and dosimetry of Ga-68-Tuna-2 was assessed by PET/CT in 13 individuals with type 2 diabetes as part of a clinical study assessing the occupancy of the dual GCGR/glucagon like peptide-1 receptor agonist SAR425899. Binding of Ga-68-Tuna-2 in liver and reference tissues was evaluated and correlated to biometrics (e.g., weight or body mass index) or other biomarkers (e.g., plasma glucagon levels). Results: Ga-68-Tuna-2 binding was seen primarily in the liver, which is in line with the strong expression of GCGR on hepatocytes. The kidneys demonstrated high excretion-related retention, whereas all other tissue demonstrated rapid washout. The SUV55 (min) (SUV during the last 10-min time frame, 50-60 min after administration) uptake endpoint was sensitive to endogenous levels of glucagon. Ga-68-Tuna-2 exhibited a safe dosimetry profile and no adverse events after intravenous administration. Conclusion: Ga-68-Tuna-2 can be used for safe and accurate assessment of the GCGR in human. It may serve as an important tool in understanding the in vivo pharmacology of novel drugs engaging the GCGR.
  •  
5.
  • Khalil, Amina, et al. (författare)
  • Introduction of a fatty acid chain modification to prolong circulatory half-life of a radioligand towards glucose-dependent insulinotropic polypeptide receptor
  • 2024
  • Ingår i: Nuclear Medicine and Biology. - : Elsevier. - 0969-8051 .- 1872-9614. ; 128
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The beneficial role of glucose-dependent insulinotropic polypeptide receptor (GIPR) in weight control and maintaining glucose levels has led to the development of several multi-agonistic peptide drug candidates, targeting GIPR and glucagon like peptide 1 receptor (GLP1R) and/or the glucagon receptor (GCGR). The in vivo quantification of target occupancy by these drugs would accelerate the development of new drug candidates. The aim of this study was to evaluate a novel peptide (GIP1234), based on previously reported ligand DOTA-GIP-C803, modified with a fatty acid moiety to prolong its blood circulation. It would allow higher target tissue exposure and consequently improved peptide uptake as well as in vivo PET imaging and quantification of GIPR occupancy by novel drugs of interest. Method: A 40 amino acid residue peptide (GIP1234) was synthesized based on DOTA-GIP-C803, in turn based on the sequences of endogenous GIP and Exendin-4 with specific amino acid modifications to obtain GIPR selectivity. A palmitoyl fatty acid chain was furthermore added at Lys14 via a glutamic acid linker to prolong its blood circulation time by the interaction with albumin. GIP1234 was conjugated with a DOTA chelator at the C -terminal cysteine residue to achieve 68Ga radiolabeling. The resulting PET probe, [68Ga]Ga-DOTA-GIP1234 was evaluated for receptor binding specificity and selectivity using HEK293 cells transfected with human GIPR, GLP1R, or GCGR. Blocking experiments with tirzepatide (2 mu M) were conducted using huGIPR HEK293 cells to investigate binding specificity. Ex vivo and in vivo organ distribution of [68Ga]Ga-DOTA-GIP1234 was studied in rats and a pig in comparison to [68Ga]Ga-DOTA-C803-GIP. Binding of [68Ga]Ga-DOTA-GIP1234 to albumin was assessed in situ using polyacrylamide gel electrophoresis (PAGE). The stability was tested in formulation buffer and rat blood plasma. Results: [68Ga]Ga-DOTA-GIP1234 was synthesized with non-decay corrected radiochemical yield of 88 +/- 3.7 % and radiochemical purity of 97.8 +/- 0.8 %. The molar activity for the radiotracer was 8.1 +/- 1.1 MBq/nmol. [68Ga]Ga-DOTA-GIP1234 was stable and maintained affinity to huGIPR HEK293 cells (dissociation constant (Kd) = 40 +/- 12.5 nM). The binding of [68Ga]Ga-DOTA-GIP1234 to huGCGR and huGLP1R cells was insignificant. Preincubation of huGIPR HEK293 cell sections with tirzepatide resulted in the decrease of [68Ga]Ga-DOTA-GIP1234 binding by close to 90 %. [68Ga]Ga-DOTA-GIP1234 displayed slow blood clearance in pigs with SUV = 3.5 after 60 min. Blood retention of the tracer in rat was 2-fold higher than that of [68Ga]Ga-DOTA-C803-GIP. [68Ga]Ga- DOTA-GIP1234 also demonstrated strong liver uptake in both pig and rat combined with decreased renal excretion. The concentration dependent binding of [68Ga]Ga-DOTA-GIP1234 to albumin was confirmed in situ by PAGE. Conclusion: [68Ga]Ga-DOTA-GIP1234 demonstrated nanomolar affinity and selectivity for huGIPR in vitro. Addition of a fatty acid moiety prolonged blood circulation time and tissue exposure in both rat and pig in vivo. However, the liver uptake was also increased which may make PET imaging of abdominal tissues such as pancreas challenging. The investigation of the influence of fatty acid moiety on the biological performance of the peptide ligand paved the way for further rational design of GIPR ligand analogues with improved characteristics.
  •  
6.
  • Velikyan, Irina, 1966-, et al. (författare)
  • First-in-class positron emission tomography tracer for the glucagon receptor
  • 2019
  • Ingår i: EJNMMI Research. - : Springer Science and Business Media LLC. - 2191-219X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The glucagon receptor (GCGR) is emerging as an important target in anti-diabetic therapy, especially as part of the pharmacology of dual glucagon-like peptide-1/glucagon (GLP-1/GCG) receptor agonists. However, currently, there are no suitable biomarkers that reliably demonstrate GCG receptor target engagement.Methods: Two potent GCG receptor peptide agonists, S01-GCG and S02-GCG, were labeled with positron emission tomography (PET) radionuclide gallium-68. The GCG receptor binding affinity and specificity of the resulting radiopharmaceuticals [68Ga]Ga-DO3A-S01-GCG and [68Ga]Ga-DO3A-S02-GCG were evaluated in HEK-293 cells overexpressing the human GCG receptor and on frozen hepatic sections from human, non-human primate, and rat. In in vivo biodistribution, binding specificity and dosimetry were assessed in rat.Results: [68Ga]Ga-DO3A-S01-GCG in particular demonstrated GCG receptor-mediated binding in cells and liver tissue with affinity in the nanomolar range required for imaging. [68Ga]Ga-DO3A-S01-GCG binding was not blocked by co-incubation of a GLP-1 agonist. In vivo binding in rat liver was GCG receptor specific with low non-specific binding throughout the body. Moreover, the extrapolated human effective doses, predicted from rat biodistribution data, allow for repeated PET imaging potentially also in combination with GLP-1R radiopharmaceuticals.Conclusion: [68Ga]Ga-DO3A-S01-GCG thus constitutes a first-in-class PET tracer targeting the GCG receptor, with suitable properties for clinical development. This tool has potential to provide direct quantitative evidence of GCG receptor occupancy in humans.
  •  
7.
  • Velikyan, Irina, 1966-, et al. (författare)
  • Imaging of the Glucose-Dependent Insulinotropic Polypeptide Receptor Using a Novel Radiolabeled Peptide Rationally Designed Based on Endogenous GIP and Synthetic Exendin-4 Sequences
  • 2023
  • Ingår i: Pharmaceuticals. - : MDPI. - 1424-8247. ; 16:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Imaging and radiotherapy targeting the glucose-dependent insulinotropic polypeptide receptor (GIPR) could potentially benefit the management of neuroendocrine neoplasms (NENs), complementing clinically established radiopharmaceuticals. The aim of this study was to evaluate a GIPR-targeting positron emission tomography (PET) radioligand with receptor-specific binding, fast blood clearance, and low liver background uptake. The peptide DOTA-bioconjugate, C803-GIP, was developed based on the sequence of the endogenous GIP(1-30) and synthetic exendin-4 peptides with selective amino acid mutations to combine their specificity for the GIPR and in vivo stability, respectively. The Ga-68-labeled bioconjugate was evaluated in vitro in terms of binding affinity, specificity, and internalization in HEK293 cells transfected with the human GIPR, GLP1, or GCG receptors and in sections of human insulinoma and NENs. In vivo binding specificity, biodistribution, and tissue background were investigated in mice bearing huGIPR-HEK293 xenografts and in a pig. Ex vivo organ distribution, pharmacokinetics, and dosimetry were studied in normal rats. [Ga-68]Ga-C803-GIP was stable and demonstrated a high affinity to the huGIPR-HEK293 cells. Binding specificity was demonstrated in vitro in frozen sections of NENs and huGIPR-HEK293 cells. No specific uptake was observed in the negative controls of huGLP1R and huGCGR cells. A novel rationally designed PET radioligand, [Ga-68]Ga-C803-GIP, demonstrated promising binding characteristics and specificity towards the GIPR.
  •  
8.
  • Wagner, Michael, 1957-, et al. (författare)
  • Automated GMP-Compliant Production of [Ga-68]Ga-DO3A-Tuna-2 for PET Microdosing Studies of the Glucagon Receptor in Humans
  • 2020
  • Ingår i: Pharmaceuticals. - : MDPI. - 1424-8247. ; 13:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: [Ga-68]Ga-DO3A-VS-Cys(40)-Tuna-2 (previously published as [Ga-68]Ga-DO3A-VS-Cys(40)-S01-GCG) has shown high-affinity specific binding to the glucagon receptor (GCGR) in vitro and in vivo in rats and non-human primates in our previous studies, confirming the suitability of the tracer for drug development applications in humans. The manufacturing process of [Ga-68]Ga-DO3A-VS-Cys(40)-Tuna-2 was automated for clinical use to meet the radiation safety and good manufacturing practice (GMP) requirements.Methods:The automated synthesis platform (Modular-Lab PharmTrace, Eckert & Ziegler, Eurotope, Germany), disposable cassettes for(68)Ga-labeling, and pharmaceutical-grade(68)Ge/Ga-68 generator (GalliaPharm(R)) used in the study were purchased from Eckert & Ziegler. The parameters such as time, temperature, precursor concentration, radical scavenger, buffer concentration, and pH, as well as product purification step, were investigated and optimized. Process optimization was conducted with regard to product quality and quantity, as well as process reproducibility. The active pharmaceutical ingredient starting material DO3A-VS-Cys(40)-Tuna-2 (GMP-grade) was provided by Sanofi Aventis.Results:The reproducible and GMP-compliant automated production of [Ga-68]Ga-DO3A-VS-Cys(40)-Tuna-2 with on-line documentation was developed. The non-decay-corrected radiochemical yield was 45.2 +/- 2.5% (n= 3, process validation) at the end of the synthesis with a labeling synthesis duration of 38 min and a quality controlincluding release procedure of 20 min. The radiochemical purity of the product was 98.9 +/- 0.6% (n= 17) with the total amount of the peptide in the preparation of 48 +/- 2 mu g (n= 3, process validation). Radionuclidic purity, sterility, endotoxin content, residual solvent content, and sterile filter integrity tests met the acceptance criteria. The product was stable at ambient temperature for at least 2 h.Conclusion:The fully automated GMP-compliant manufacturing process was developed and thoroughly validated. The resulting [Ga-68]Ga-DO3A-VS-Cys(40)-Tuna-2 was used in a clinical study for accurate quantification of GCGR occupancy by a dual anti-diabetic drug in vivo in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy