SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bostroem K. Azalee) "

Sökning: WFRF:(Bostroem K. Azalee)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hosseinzadeh, Griffin, et al. (författare)
  • The Early Light Curve of SN 2023bee : Constraining Type Ia Supernova Progenitors the Apian Way
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 953:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present very early photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2023bee, starting about 8 hr after the explosion, which reveal a strong excess in the optical and nearest UV (U and UVW1) bands during the first several days of explosion. This data set allows us to probe the nature of the binary companion of the exploding white dwarf and the conditions leading to its ignition. We find a good match to the Kasen model in which a main-sequence companion star stings the ejecta with a shock as they buzz past. Models of double detonations, shells of radioactive nickel near the surface, interaction with circumstellar material, and pulsational delayed detonations do not provide good matches to our light curves. We also observe signatures of unburned material, in the form of carbon absorption, in our earliest spectra. Our radio nondetections place a limit on the mass-loss rate from the putative companion that rules out a red giant but allows a main-sequence star. We discuss our results in the context of other similar SNe Ia in the literature.
  •  
2.
  • Fox, Ori D., et al. (författare)
  • The slow demise of the long-lived SN 2005ip
  • 2020
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 498:1, s. 517-531
  • Tidskriftsartikel (refereegranskat)abstract
    • The Type IIn supernova (SN IIn) 2005ip is one of the most well-studied and long-lasting examples of an SN interacting with its circumstellar environment. The optical light curve plateaued at a nearly constant level for more than five years, suggesting ongoing shock interaction with an extended and clumpy circumstellar medium (CSM). Here, we present continued observations of the SN from ∼1000 to 5000 d post-explosion at all wavelengths, including X-ray, ultraviolet, near-infrared (NIR), and mid-infrared. The UV spectra probe the pre-explosion mass loss and show evidence for CNO processing. From the bolometric light curve, we find that the total radiated energy is in excess of 1050 erg, the progenitor star’s pre-explosion mass-loss rate was ≳1×10−2M⊙ yr−1⁠, and the total mass lost shortly before explosion was ≳1M⊙⁠, though the mass lost could have been considerably larger depending on the efficiency for the conversion of kinetic energy to radiation. The ultraviolet through NIR spectrum is characterized by two high-density components, one with narrow high-ionization lines, and one with broader low-ionization H i, He i, [O i], Mg ii, and Fe ii lines. The rich Fe ii spectrum is strongly affected by Lyα fluorescence, consistent with spectral modelling. Both the Balmer and He i lines indicate a decreasing CSM density during the late interaction period. We find similarities to SN 1988Z, which shows a comparable change in spectrum at around the same time during its very slow decline. These results suggest that, at long last, the shock interaction in SN 2005ip may finally be on the decline.
  •  
3.
  • Fox, Ori D., et al. (författare)
  • UNCOVERING THE PUTATIVE B-STAR BINARY COMPANION OF THE SN 1993J PROGENITOR
  • 2014
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 790:1, s. 17-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Type IIb supernova (SN) 1993J is one of only a few stripped-envelope SNe with a progenitor star identified in pre-explosion images. SN IIb models typically invoke H envelope stripping by mass transfer in a binary system. For the case of SN 1993J, the models suggest that the companion grew to 22M(circle dot) and became a source of ultraviolet (UV) excess. Located in M81, at a distance of only 3.6 Mpc, SN 1993J offers one of the best opportunities to detect the putative companion and test the progenitor model. Previously published near-UV spectra in 2004 showed evidence for absorption lines consistent with a hot (B2 Ia) star, but the field was crowded and dominated by flux from the SN. Here we present Hubble Space Telescope Cosmic Origins Spectrograph and Wide-Field Camera 3 observations of SN 1993J from 2012, at which point the flux from the SN had faded sufficiently to potentially measure the UV continuum properties from the putative companion. The resulting UV spectrum is consistent with contributions from both a hot B star and the SN, although we cannot rule out line-of-sight coincidences.
  •  
4.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Constraining the Progenitor System of the Type Ia Supernova 2021aefx
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 933:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence optical and ultraviolet light curves of the normal Type Ia supernova (SN) 2021aefx, which shows an early bump during the first two days of observation. This bump may be a signature of interaction between the exploding white dwarf and a nondegenerate binary companion, or it may be intrinsic to the white dwarf explosion mechanism. In the case of the former, the short duration of the bump implies a relatively compact main-sequence companion star, although this conclusion is viewing-angle dependent. Our best-fit companion-shocking and double-detonation models both overpredict the UV luminosity during the bump, and existing nickel-shell models do not match the strength and timescale of the bump. We also present nebular spectra of SN 2021aefx, which do not show the hydrogen or helium emission expected from a nondegenerate companion, as well as a radio nondetection that rules out all symbiotic progenitor systems and most accretion disk winds. Our analysis places strong but conflicting constraints on the progenitor of SN 2021aefx; no current model can explain all of our observations.
  •  
5.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 935:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence optical, ultraviolet (UV), and near-infrared data of the nearby (D approximate to 23 Mpc) Type II supernova (SN) 2021yja. Many Type II SNe show signs of interaction with circumstellar material (CSM) during the first few days after explosion, implying that their red supergiant (RSG) progenitors experience episodic or eruptive mass loss. However, because it is difficult to discover SNe early, the diversity of CSM configurations in RSGs has not been fully mapped. SN 2021yja, first detected within approximate to 5.4 hours of explosion, shows some signatures of CSM interaction (high UV luminosity and radio and x-ray emission) but without the narrow emission lines or early light-curve peak that can accompany CSM. Here we analyze the densely sampled early light curve and spectral series of this nearby SN to infer the properties of its progenitor and CSM. We find that the most likely progenitor was an RSG with an extended envelope, encompassed by low-density CSM. We also present archival Hubble Space Telescope imaging of the host galaxy of SN 2021yja, which allows us to place a stringent upper limit of less than or similar to 9 M-circle dot; on the progenitor mass. However, this is in tension with some aspects of the SN evolution, which point to a more massive progenitor. Our analysis highlights the need to consider progenitor structure when making inferences about CSM properties, and that a comprehensive view of CSM tracers should be made to give a fuller view of the last years of RSG evolution.
  •  
6.
  • Jencson, Jacob E., et al. (författare)
  • AT 2019qyl in NGC 300 : Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 920:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Nova eruptions, thermonuclear explosions on the surfaces of white dwarfs (WDs), are now recognized to be among the most common shock-powered astrophysical transients. We present the early discovery and rapid ultraviolet (UV), optical, and infrared (IR) temporal development of AT 2019qyl, a recent nova in the nearby Sculptor Group galaxy NGC 300. The light curve shows a rapid rise lasting ≲1 day, reaching a peak absolute magnitude of MV = −9.2 mag and a very fast decline, fading by 2 mag over 3.5 days. A steep dropoff in the light curves after 71 days and the rapid decline timescale suggest a low-mass ejection from a massive WD with MWD ≳ 1.2 M⊙. We present an unprecedented view of the early spectroscopic evolution of such an event. Three spectra prior to the peak reveal a complex, multicomponent outflow giving rise to internal collisions and shocks in the ejecta of an He/N-class nova. We identify a coincident IR-variable counterpart in the extensive preeruption coverage of the transient location and infer the presence of a symbiotic progenitor system with an O-rich asymptotic-giant-branch donor star, as well as evidence for an earlier UV-bright outburst in 2014. We suggest that AT 2019qyl is analogous to the subset of Galactic recurrent novae with red-giant companions such as RS Oph and other embedded nova systems like V407 Cyg. Our observations provide new evidence that internal shocks between multiple, distinct outflow components likely contribute to the generation of the shock-powered emission from such systems.
  •  
7.
  • Ni, Yuan Qi, et al. (författare)
  • Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:5, s. 568-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ia supernovae are thermonuclear explosions of white dwarf stars. They play a central role in the chemical evolution of the Universe and are an important measure of cosmological distances. However, outstanding questions remain about their origins. Despite extensive efforts to obtain natal information from their earliest signals, observations have thus far failed to identify how the majority of them explode. Here, we present infant-phase detections of SN 2018aoz from a very low brightness of −10.5 AB absolute magnitude, revealing a hitherto unseen plateau in the B band that results in a rapid redward colour evolution between 1.0 and 12.4 hours after the estimated epoch of first light. The missing B-band flux is best explained by line-blanket absorption from Fe-peak elements in the outer 1% of the ejected mass. The observed B − V colour evolution of the supernova also matches the prediction from an over-density of Fe-peak elements in the same outer 1% of the ejected mass, whereas bluer colours are expected from a purely monotonic distribution of Fe-peak elements. The presence of excess nucleosynthetic material in the extreme outer layers of the ejecta points to enhanced surface nuclear burning or extended subsonic mixing processes in some normal type Ia SN explosions.
  •  
8.
  • Ni, Yuan Qi, et al. (författare)
  • The Origin and Evolution of the Normal Type Ia SN 2018aoz with Infant-phase Reddening and Excess Emission
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 946:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2018aoz is a Type Ia SN with a B-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hα and He i favor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [O I] and He i disfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Fe II] and [Ni II]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission, Bmax–Vmax color, and weak strength of nebular-phase [Ca II]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy