SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bostrom Mathias) "

Sökning: WFRF:(Bostrom Mathias)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amirhosseini, Mehdi, et al. (författare)
  • GSK-3 beta inhibition suppresses instability-induced osteolysis by a dual action on osteoblast and osteoclast differentiation
  • 2018
  • Ingår i: Journal of Cellular Physiology. - : WILEY. - 0021-9541 .- 1097-4652. ; 233:3, s. 2398-2408
  • Tidskriftsartikel (refereegranskat)abstract
    • Currently, there are no medications available to treat aseptic loosening of orthopedic implants. Using osteoprotegerin fusion protein (OPG-Fc), we previously blocked instability-induced osteoclast differentiation and peri-prosthetic osteolysis. Wnt/beta-catenin signaling, which regulates OPG secretion from osteoblasts, also modulates the bone tissue response to mechanical loading. We hypothesized that activating Wnt/beta-catenin signaling by inhibiting glycogen synthase kinase-3 beta (GSK-3 beta) would reduce instability-induced bone loss through regulation of both osteoblast and osteoclast differentiation. We examined effects of GSK-3 beta inhibition on regulation of RANKL and OPG in a rat model of mechanical instability-induced peri-implant osteolysis. The rats were treated daily with a GSK-3 beta inhibitor, AR28 (20 mg/kg bw), for up to 5 days. Bone tissue and blood serum were assessed by qRT-PCR, immunohistochemistry, and ELISA on days 3 and 5, and by micro-CT on day 5. After 3 days of treatment with AR28, mRNA levels of beta-catenin, Runx2, Osterix, Col1 alpha 1, and ALP were increased leading to higher osteoblast numbers compared to vehicle-treated animals. BMP-2 and Wnt16 mRNA levels were downregulated by mechanical instability and this was rescued by GSK-3 beta inhibition. Osteoclast numbers were decreased significantly after 3 days of GSK-3 beta inhibition, which correlated with enhanced OPG mRNA expression. This was accompanied by decreased serum levels of TRAP5b on days 3 and 5. Treatment with AR28 upregulated osteoblast differentiation, while osteoclastogenesis was blunted, leading to increased bone mass by day 5. These data suggest that GSK-3 beta inactivation suppresses osteolysis through regulating both osteoblast and osteoclast differentiation in a rat model of instability-induced osteolysis.
  •  
2.
  • Bostrom, Mathias, et al. (författare)
  • Lifshitz interaction can promote ice growth at water-silica interfaces
  • 2017
  • Ingår i: Physical Review B. - : American Physical Society. - 2469-9950 .- 2469-9969. ; 95:15
  • Tidskriftsartikel (refereegranskat)abstract
    • At air-water interfaces, the Lifshitz interaction by itself does not promote ice growth. On the contrary, we find that the Lifshitz force promotes the growth of an ice film, up to 1-8 nm thickness, near silica-water interfaces at the triple point of water. This is achieved in a system where the combined effect of the retardation and the zero frequency mode influences the short-range interactions at low temperatures, contrary to common understanding. Cancellation between the positive and negative contributions in the Lifshitz spectral function is reversed in silica with high porosity. Our results provide a model for how water freezes on glass and other surfaces.
  •  
3.
  • Bostrom, Mathias, et al. (författare)
  • Self-preserving ice layers on CO2 clathrate particles : Implications for Enceladus, Pluto, and similar ocean worlds
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 650
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gas hydrates can be stabilised outside their window of thermodynamic stability by the formation of an ice layer - a phenomenon termed self-preservation. This can lead to a positive buoyancy for clathrate particles containing CO2 that would otherwise sink in the oceans of Enceladus, Pluto, and similar oceanic worlds.Aims. Here we investigate the implications of Lifshitz forces and low occupancy surface regions on type I clathrate structures for their self-preservation through ice layer formation, presenting a plausible model based on multi-layer interactions through dispersion forces.Methods. We used optical data and theoretical models for the dielectric response for water, ice, and gas hydrates with a different occupancy. Taking this together with the thermodynamic Lifshitz free energy, we modelled the energy minima essential for the formation of ice layers at the interface between gas hydrate and liquid water.Results. We predict the growth of an ice layer between 0.01 and 0.2 mu m thick on CO, CH4, and CO2 hydrate surfaces, depending on the presence of surface regions depleted in gas molecules. Effective hydrate particle density is estimated, delimiting a range of particle size and compositions that would be buoyant in different oceans. Over geological time, the deposition of floating hydrate particles could result in the accumulation of kilometre-thick gas hydrate layers above liquid water reservoirs and below the water ice crusts of their respective ocean worlds. On Enceladus, the destabilisation of near-surface hydrate deposits could lead to increased gas pressures that both drive plumes and entrain stabilised hydrate particles. Furthermore, on ocean worlds, such as Enceladus and particularly Pluto, the accumulation of thick CO2 or mixed gas hydrate deposits could insulate its ocean against freezing. In preventing freezing of liquid water reservoirs in ocean worlds, the presence of CO2-containing hydrate layers could enhance the habitability of ocean worlds in our Solar System and on the exoplanets and exomoons beyond.
  •  
4.
  •  
5.
  • Fahlgren, Anna, et al. (författare)
  • Fluid pressure and flow as a cause of bone resorption
  • 2010
  • Ingår i: Acta Orthopaedica. - : Taylor & Francis. - 1745-3674 .- 1745-3682. ; 81:4, s. 508-516
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Unstable implants in bone become surrounded by an osteolytic zone. This is seen around loose screws, for example, but may also contribute to prosthetic loosening. Previous animal studies have shown that such zones can be induced by fluctuations in fluid pressure or flow, caused by implant instability. Method To understand the roles of pressure and flow, we describe the 3-dimensional distribution of osteolytic lesions in response to fluid pressure and flow in a previously reported rat model of aseptic loosening. 50 rats had a piston inserted in the proximal tibia, designed to produce 20 local spikes in fluid pressure of a clinically relevant magnitude (700 mmHg) twice a day. The spikes lasted for about 0.3 seconds. After 2 weeks, the pressure was measured in vivo, and the osteolytic lesions induced were studied using micro-CT scans. Results Most bone resorption occurred at pre-existing cavities within the bone in the periphery around the pressurized region, and not under the piston. This region is likely to have a higher fluid flow and less pressure than the area just beneath the piston. The velocity of fluid flow was estimated to be very high (roughly 20 mm/s). Interpretation The localization of the resorptive lesions suggests that high-velocity fluid flow is important for bone resorption induced by instability.
  •  
6.
  • Fiedler, Johannes, et al. (författare)
  • Effective Polarizability Models
  • 2017
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 121:51, s. 9742-9751
  • Tidskriftsartikel (refereegranskat)abstract
    • Theories for the effective polarizability of a small particle in a medium are presented using different levels of approximation: we consider the virtual cavity, real cavity, and the hard-sphere models as well as a continuous interpolation of the latter two. We present the respective hard-sphere and-cavity radii as obtained from density-functional simulations as well as the resulting effective polarizabilities at discrete Matsubara frequencies. This enables us to account for macroscopic media in van der Waals interactions between molecules in water and their Casimir-Polder interaction with an interface.
  •  
7.
  • Grosso, Matthew J., et al. (författare)
  • Intermittent PTH Administration and Mechanical Loading Are Anabolic for Periprosthetic Cancellous Bone
  • 2015
  • Ingår i: Journal of Orthopaedic Research. - : Wiley: 12 months. - 0736-0266 .- 1554-527X. ; 33:2, s. 163-173
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to determine the individual and combined effects on periprosthetic cancellous bone of intermittent parathyroid hormone administration (iPTH) and mechanical loading at the cellular, molecular, and tissue levels. Porous titanium implants were inserted bilaterally on the cancellous bone of adult rabbits beneath a loading device attached to the distal lateral femur. The left femur received a sham loading device. The right femur was loaded daily, and half of the rabbits received daily PTH. Periprosthetic bone was evaluated up to 28 days for gene expression, histology, and mu CT analysis. Loading and iPTH increased bone mass by a combination of two mechanisms: (1) Altering cell populations in a pro-osteoblastic/anti-adipocytic direction, and (2) controlling bone turnover by modulating the RANKL-OPG ratio. At the tissue level, BV/TV increased with both loading (+53%, pless than0.05) and iPTH (+54%, pless than0.05). Combined treatment showed only small additional effects at the cellular and molecular levels that corresponded to a small additive effect on bone volume (+13% compared to iPTH alone, pgreater than0.05). This study suggests that iPTH and loading are potential therapies for enhancing periprosthetic bone formation. The elucidation of the cellular and molecular response may help further enhance the combined therapy and related targeted treatment strategies.
  •  
8.
  • Li, Yang, et al. (författare)
  • Origin of anomalously stabilizing ice layers on methane gas hydrates near rock surface
  • 2023
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 25:9, s. 6636-6652
  • Tidskriftsartikel (refereegranskat)abstract
    • Gas hydrates (GHs) in water close to freezing temperatures can be stabilised via the formation of ice layers. In a recent work [Bostrom et al., Astron. Astrophys., A54, 650, 2021], it was found that a surface region with partial gas dilution could be essential for obtaining nano- to micron-sized anomalously stabilizing ice layers. In this paper, it is demonstrated that the Casimir-Lifshitz free energy in multi-layer systems could induce thinner, but more stable, ice layers in cavities than those found for gas hydrates in a large reservoir of cold water. The thickness and stability of such ice layers in a pore filled with cold water could influence the leakage of gas molecules. Additional contributions, e.g. from salt-induced stresses, can also be of importance, and are briefly discussed.
  •  
9.
  • Nam, Denis, et al. (författare)
  • Emerging Ideas: Instability-induced Periprosthetic Osteolysis Is Not Dependent on the Fibrous Tissue Interface
  • 2013
  • Ingår i: Clinical Orthopaedics and Related Research. - : Springer Verlag (Germany). - 0009-921X .- 1528-1132. ; 471:6, s. 1758-1762
  • Tidskriftsartikel (refereegranskat)abstract
    • Stable initial fixation of a total joint arthroplasty implant is critical to avoid the risk of aseptic loosening and premature clinical failure. With implant motion, a fibrous tissue layer forms at the bone-implant interface, leading to implant migration and periprosthetic osteolysis. At the time of implant revision surgery, proresorptive signaling cytokines are expressed in the periimplant fibrous membrane. However, the exact role of this fibrous tissue in causing periprosthetic osteolysis attributable to instability remains unknown. less thanbrgreater than less thanbrgreater thanWe propose an alternative mechanism of periprosthetic osteolysis independent of the fibrous tissue layer, where pressurized fluid flow along the bone-implant interface activates mechanosensitive osteocytes in the periprosthetic bone, causing the release of proresorptive cytokines and subsequent osteoclast differentiation and osteolysis. less thanbrgreater than less thanbrgreater thanAn animal model for instability-induced osteolysis that mimics the periprosthetic bone-implant interface will be used. In this model, a fibrous tissue membrane is allowed to form in the periprosthetic zone, and pressurized fluid flow transmitted through this membrane reliably creates osteolytic lesions in the periprosthetic bone. In this study, half of the rats will have the fibrous tissue present, while the other half will not. We will determine whether the fibrous tissue membrane is essential for the release of proosteoclastic cytokines, leading to osteoclast differentiation and periprosthetic bone loss, by measuring the volume of bone resorption and presence of proresorptive cytokines at the bone-implant interface. less thanbrgreater than less thanbrgreater thanWe will determine whether the fibrous tissue membrane is crucial for osteoclastogenic signaling in the setting of periimplant osteolysis. In the future, this will allow us to test therapeutic interventions, such as specific cytokine inhibitors or alterations in implant design, which may translate into new, clinically relevant strategies to prevent osteolysis.
  •  
10.
  • Oliveira, Camila, et al. (författare)
  • Surface studies of the chemical environment in gold nanorods supported by X-ray photoelectron spectroscopy (XPS) and ab initio calculations
  • 2021
  • Ingår i: JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T. - : Elsevier BV. - 2238-7854. ; 15, s. 768-776
  • Tidskriftsartikel (refereegranskat)abstract
    • In this manuscript, we prepared gold nanorods (Au-NRs) through "silver-assisted seeded methodology" and studied their outermost layer using XPS spectroscopy and ab initio calculations to compare the chemical states of the constituents of the metallic core. Supporting first-principles calculations employing a relativistic, full-potential and all-electron method, with augmented plane waves plus local orbitals as a basis set, ensure proper treatment of the core electron states. Three significant findings can be reported. First, we found that besides Au (0), there are two chemical states for silver, namely Ag (0) and Ag(I), on the Au surface. Our results corroborate with recent results reported in the literature, indicating that Ag monolayer can be oxidized to Ag(I) during the steps of centrifugation and washing with diluted CTAB solution. Second, ab initio simulations showed that Ag atoms have different binding energies, depending on their configuration in Au-NRs (whether silver atoms are found on the surface or if they are spread in bulk as interstitial or substitutional defects). Third, theoretical studies showed that silver atoms located at interstitial sites could distort the crystalline structure, and, therefore, we do not expect interstitial Ag to occur in Au-NRs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy