SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bourbeau E.) "

Sökning: WFRF:(Bourbeau E.)

  • Resultat 1-10 av 33
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
3.
  • Aartsen, M. G., et al. (författare)
  • Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data
  • 2019
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 79:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Collaboration has observed a high-energy astrophysical neutrino flux and recently found evidence for neutrino emission from the blazar TXS 0506+056. These results open a new window into the high-energy universe. However, the source or sources of most of the observed flux of astrophysical neutrinos remains uncertain. Here, a search for steady point-like neutrino sources is performed using an unbinned likelihood analysis. The method searches for a spatial accumulation of muon-neutrino events using the very high-statistics sample of about 497,000 neutrinos recorded by IceCube between 2009 and 2017. The median angular resolution is approximate to 1 degrees at 1 TeV and improves to approximate to 0.3 degrees for neutrinos with an energy of 1 PeV. Compared to previous analyses, this search is optimized for point-like neutrino emission with the same flux-characteristics as the observed astrophysical muon-neutrino flux and introduces an improved event-reconstruction and parametrization of the background. The result is an improvement in sensitivity to the muon-neutrino flux compared to the previous analysis of approximate to 35% assuming an E-2 spectrum. The sensitivity on the muon-neutrino flux is at a level of E2dN/dE=310-13s-1. No new evidence for neutrino sources is found in a full sky scan and in an a priori candidate source list that is motivated by gamma-ray observations. Furthermore, no significant excesses above background are found from populations of sub-threshold sources. The implications of the non-observation for potential source classes are discussed.
  •  
4.
  • Abbasi, R., et al. (författare)
  • Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing
  • 2023
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 108:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe a new data sample of IceCube DeepCore and report on the latest measurement of atmospheric neutrino oscillations obtained with data recorded between 2011-2019. The sample includes significant improvements in data calibration, detector simulation, and data processing, and the analysis benefits from a sophisticated treatment of systematic uncertainties, with significantly greater level of detail since our last study. By measuring the relative fluxes of neutrino flavors as a function of their reconstructed energies and arrival directions we constrain the atmospheric neutrino mixing parameters to be sin2θ23=0.51±0.05 and Δm322=2.41±0.07×10-3 eV2, assuming a normal mass ordering. The errors include both statistical and systematic uncertainties. The resulting 40% reduction in the error of both parameters with respect to our previous result makes this the most precise measurement of oscillation parameters using atmospheric neutrinos. Our results are also compatible and complementary to those obtained using neutrino beams from accelerators, which are obtained at lower neutrino energies and are subject to different sources of uncertainties.
  •  
5.
  • Abbasi, R., et al. (författare)
  • Search for Continuous and Transient Neutrino Emission Associated with IceCube's Highest-energy Tracks: An 11 yr Analysis
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 964:1
  • Tidskriftsartikel (refereegranskat)abstract
    • IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of >= 0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events' error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3 sigma, which confirms previous IceCube studies. When correcting for 122 test positions, the global p-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 x 10-15 (TeV cm2 s)-1 at 90% confidence assuming an E -2 spectrum. This corresponds to 4.5% of IceCube's astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.
  •  
6.
  • Abbasi, R., et al. (författare)
  • Search for Galactic Core-collapse Supernovae in a Decade of Data Taken with the IceCube Neutrino Observatory
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 1538-4357 .- 0004-637X. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The IceCube Neutrino Observatory has been continuously taking data to search for O(0.5–10) s long neutrino bursts since 2007. Even if a Galactic core-collapse supernova is optically obscured or collapses to a black hole instead of exploding, it will be detectable via the O(10) MeV neutrino burst emitted during the collapse. We discuss a search for such events covering the time between 2008 April 17 and 2019 December 31. Considering the average data taking and analysis uptime of 91.7% after all selection cuts, this is equivalent to 10.735 yr of continuous data taking. In order to test the most conservative neutrino production scenario, the selection cuts were optimized for a model based on an 8.8 solar mass progenitor collapsing to an O–Ne–Mg core. Conservative assumptions on the effects of neutrino oscillations in the exploding star were made. The final selection cut was set to ensure that the probability to detect such a supernova within the Milky Way exceeds 99%. No such neutrino burst was found in the data after performing a blind analysis. Hence, a 90% C.L. upper limit on the rate of core-collapse supernovae out to distances of ≈25 kpc was determined to be 0.23 yr−1. For the more distant Magellanic Clouds, only high neutrino luminosity supernovae will be detectable by IceCube, unless external information on the burst time is available. We determined a model-independent limit by parameterizing the dependence on the neutrino luminosity and the energy spectrum.
  •  
7.
  • Kankare, E., et al. (författare)
  • Search for transient optical counterparts to high-energy IceCube neutrinos with Pan-STARRS1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 626
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to identify the sources of the observed diffuse high-energy neutrino flux, it is crucial to discover their electromagnetic counterparts. To increase the sensitivity of detecting counterparts of transient or variable sources by telescopes with a limited field of view, IceCube began releasing alerts for single high-energy (E-v > 60 TeV) neutrino detections with sky localisation regions of order 1 degrees radius in 2016. We used Pan-STARRS1 to follow-up five of these alerts during 2016-2017 to search for any optical transients that may be related to the neutrinos. Typically 10-20 faint m(ip1) less than or similar to 22.5 mag) extragalactic transients are found within the Pan-STARRS1 footprints and are generally consistent with being unrelated field supernovae (SNe) and AGN. We looked for unusual properties of the detected transients, such as temporal coincidence of explosion epoch with the IceCube timestamp, or other peculiar light curve and physical properties. We found only one transient that had properties worthy of a specific follow-up. In the Pan-STARRS1 imaging for IceCube-160427A (probability to be of astrophysical origin of similar to 50%), we found a SN PS16cgx, located at 10.0' from the nominal IceCube direction. Spectroscopic observations of PS16cgx showed that it was an H-poor SN at redshift z = 0.2895 +/- 0.0001. The spectra and light curve resemble some high-energy Type Ic SNe, raising the possibility of a jet driven SN with an explosion epoch temporally coincident with the neutrino detection. However, distinguishing Type Ia and Type Ic SNe at this redshift is notoriously difficult. Based on all available data we conclude that the transient is more likely to be a Type Ia with relatively weak Sin absorption and a fairly normal rest-frame r-band light curve. If, as predicted, there is no high-energy neutrino emission from Type Ia SNe, then PS16cgx must be a random coincidence, and unrelated to the IceCube-160427A. We find no other plausible optical transient for any of the five IceCube events observed down to a 5 sigma limiting magnitude of mip1 approximate to 22 mag, between 1 day and 25 days after detection.
  •  
8.
  • Aartsen, M. G., et al. (författare)
  • Constraints on Minute-Scale Transient Astrophysical Neutrino Sources
  • 2019
  • Ingår i: Physical Review Letters. - : AMER PHYSICAL SOC. - 0031-9007 .- 1079-7114. ; 122:5
  • Tidskriftsartikel (refereegranskat)abstract
    • High-energy neutrino emission has been predicted for several short-lived astrophysical transients including gamma-ray bursts (GRBs), core-collapse supernovae with choked jets, and neutron star mergers. IceCube's optical and x-ray follow-up program searches for such transient sources by looking for two or more muon neutrino candidates in directional coincidence and arriving within 100 s. The measured rate of neutrino alerts is consistent with the expected rate of chance coincidences of atmospheric background events and no likely electromagnetic counterparts have been identified in Swift follow-up observations. Here, we calculate generic bounds on the neutrino flux of short-lived transient sources. Assuming an E-2.5 neutrino spectrum, we find that the neutrino flux of rare sources, like long gamma-ray bursts, is constrained to < 5% of the detected astrophysical flux and the energy released in neutrinos (100 GeV to 10 PeV) by a median bright GRB-like source is < 10(52.5) erg. For a harder E-2.13 neutrino spectrum up to 30% of the flux could be produced by GRBs and the allowed median source energy is < 10(52) erg. A hypothetical population of transient sources has to be more common than 10(-5) Mpc(-3) yr(-1) (5 x 10(-8) Mpc(-3) yr(-1) for the E-2.13 spectrum) to account for the complete astrophysical neutrino flux.
  •  
9.
  • Aartsen, M. G., et al. (författare)
  • Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube
  • 2019
  • Ingår i: Physical Review D. - : AMER PHYSICAL SOC. - 2470-0010 .- 2470-0029. ; 100:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on measurements of the all-particle cosmic ray energy spectrum and composition in the PeV to EeV energy range using 3 years of data from the IceCube Neutrino Observatory. The IceTop detector measures cosmic ray induced air showers on the surface of the ice, from which the energy spectrum of cosmic rays is determined by making additional assumptions about the mass composition. A separate measurement is performed when IceTop data are analyzed in coincidence with the high-energy muon energy loss information from the deep in-ice IceCube detector. In this measurement, both the spectrum and the mass composition of the primary cosmic rays are simultaneously reconstructed using a neural network trained on observables from both detectors. The performance and relative advantages of these two distinct analyses are discussed, including the systematic uncertainties and the dependence on the hadronic interaction models, and both all-particle spectra as well as individual spectra for elemental groups are presented.
  •  
10.
  • Aartsen, M. G., et al. (författare)
  • Detection of the Temporal Variation of the Sun's Cosmic Ray Shadow with the IceCube Detector
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 872:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the observation of a deficit in the cosmic ray flux from the directions of the Moon and Sun with five years of data taken by the IceCube Neutrino Observatory. Between 2010 May and 2011 May the IceCube detector operated with 79 strings deployed in the glacial ice at the South Pole, and with 86 strings between 2011 May and 2015 May. A binned analysis is used to measure the relative deficit and significance of the cosmic ray shadows. Both the cosmic ray Moon and Sun shadows are detected with high statistical significance (>10σ) for each year. The results for the Moon shadow are consistent with previous analyses and verify the stability of the IceCube detector over time. This work represents the first observation of the Sun shadow with the IceCube detector. We show that the cosmic ray shadow of the Sun varies with time. These results make it possible to study cosmic ray transport near the Sun with future data from IceCube.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 33

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy