SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bovée Judith V.M.G.) "

Sökning: WFRF:(Bovée Judith V.M.G.)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ameline, Baptiste, et al. (författare)
  • Methylation and copy number profiling : emerging tools to differentiate osteoblastoma from malignant mimics?
  • 2022
  • Ingår i: Modern Pathology. - : Elsevier BV. - 0893-3952. ; 35:9, s. 1204-1211
  • Tidskriftsartikel (refereegranskat)abstract
    • Rearrangements of the transcription factors FOS and FOSB have recently been identified as the genetic driver event underlying osteoid osteoma and osteoblastoma. Nuclear overexpression of FOS and FOSB have since then emerged as a reliable surrogate marker despite limitations in specificity and sensitivity. Indeed, osteosarcoma can infrequently show nuclear FOS expression and a small fraction of osteoblastomas seem to arise independent of FOS/FOSB rearrangements. Acid decalcification and tissue preservation are additional factors that can negatively influence immunohistochemical testing and make diagnostic decision-making challenging in individual cases. Particularly aggressive appearing osteoblastomas, also referred to as epithelioid osteoblastomas, and osteoblastoma-like osteosarcoma can be difficult to distinguish, underlining the need for additional markers to support the diagnosis. Methylation and copy number profiling, a technique well established for the classification of brain tumors, might fill this gap. Here, we set out to comprehensively characterize a series of 77 osteoblastomas by immunohistochemistry, fluorescence in-situ hybridization as well as copy number and methylation profiling and compared our findings to histologic mimics. Our results show that osteoblastomas are uniformly characterized by flat copy number profiles that can add certainty in reaching the correct diagnosis. The methylation cluster formed by osteoblastomas, however, so far lacks specificity and can be misleading in individual cases.
  •  
2.
  • Bekers, Elise M., et al. (författare)
  • Soft tissue angiofibroma : Clinicopathologic, immunohistochemical and molecular analysis of 14 cases
  • 2017
  • Ingår i: Genes Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 56:10, s. 750-757
  • Tidskriftsartikel (refereegranskat)abstract
    • Soft tissue angiofibroma is rare and has characteristic histomorphological and genetic features. For diagnostic purposes, there are no specific antibodies available. Fourteen lesions (6 females, 8 males; age range 7-67 years) of the lower extremities (12) and trunk (2) were investigated by immunohistochemistry, including for the first time NCOA2. NCOA2 was also tested in a control group of other spindle cell lesions. The known fusion-genes (AHRR-NCOA2 and GTF2I-NCOA2) were examined using RT-PCR in order to evaluate their diagnostic value. Cases in which no fusion gene was detected were additionally analysed by RNA sequencing. All cases tested showed nuclear expression of NCOA2. However, this was not specific since other spindle cell neoplasms also expressed this marker in a high percentage of cases. Other variably positive markers were EMA, SMA, desmin and CD34. STAT6 was negative in the cases tested. By RT-PCR for the most frequently observed fusions, an AHRR-NCOA2 fusion transcript was found in 9/14 cases. GTF2I-NCOA2 was not detected in the remaining cases (n = 3). RNA sequencing revealed three additional positive cases; two harbored a AHRR-NCOA2 fusion and one case a novel GAB1-ABL1 fusion. Two cases failed molecular analysis due to poor RNA quality. In conclusion, the AHRR-NCOA2 fusion is a frequent finding in soft tissue angiofibroma, while GTF2I-NCOA2 seems to be a rare genetic event. For the first time, we report a GAB1-ABL1 fusion in a soft tissue angiofibroma of a child. Nuclear expression of NCOA2 is not discriminating when compared with other spindle cell neoplasms.
  •  
3.
  • Hallor, Karolin H, et al. (författare)
  • Genomic profiling of chondrosarcoma: chromosomal patterns in central and peripheral tumors.
  • 2009
  • Ingår i: Clinical Cancer Research. - 1078-0432. ; 15:8, s. 2685-2694
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: Histologic grade is currently the best predictor of clinical course in chondrosarcoma patients. Grading suffers, however, from extensive interobserver variability and new objective markers are needed. Hence, we have investigated DNA copy numbers in chondrosarcomas with the purpose of identifying markers useful for prognosis and subclassification. EXPERIMENTAL DESIGN: The overall pattern of genomic imbalances was assessed in a series of 67 chondrosarcomas using array comparative genomic hybridization. Statistical analyses were applied to evaluate the significance of alterations detected in subgroups based on clinical data, morphology, grade, tumor size, and karyotypic features. Also, the global gene expression profiles were obtained in a subset of the tumors. RESULTS: Genomic imbalances, in most tumors affecting large regions of the genome, were found in 90% of the cases. Several apparently distinctive aberrations affecting conventional central and peripheral tumors, respectively, were identified. Although rare, recurrent amplifications were found at 8q24.21-q24.22 and 11q22.1-q22.3, and homozygous deletions of loci previously implicated in chondrosarcoma development affected the CDKN2A, EXT1, and EXT2 genes. The chromosomal imbalances in two distinct groups of predominantly near-haploid and near-triploid tumors, respectively, support the notion that polyploidization of an initially hyperhaploid/hypodiploid cell population is a common mechanism of chondrosarcoma progression. Increasing patient age as well as tumor grade were associated with adverse outcome, but no copy number imbalance affected metastasis development or tumor-associated death. CONCLUSION: Despite similarities in the overall genomic patterns, the present findings suggest that some regions are specifically altered in conventional central and peripheral tumors, respectively.
  •  
4.
  • Hansén Nord, Karolin, et al. (författare)
  • GRM1 is upregulated through gene fusion and promoter swapping in chondromyxoid fibroma
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 46:5, s. 474-477
  • Tidskriftsartikel (refereegranskat)abstract
    • Glutamate receptors are well-known actors in the central and peripheral nervous systems, and altered glutamate signaling is implicated in several neurological and psychiatric disorders. It is increasingly recognized that such receptors may also have a role in tumor growth. Here we provide direct evidence of aberrant glutamate signaling in the development of a locally aggressive bone tumor, chondromyxoid fibroma (CMF). We subjected a series of CMFs to whole-genome mate-pair sequencing and RNA sequencing and found that the glutamate receptor gene GRM1 recombines with several partner genes through promoter swapping and gene fusion events. The GRM1 coding region remains intact, and 18 of 20 CMFs (90%) showed a more than 100-fold and up to 1,400-fold increase in GRM1 expression levels compared to control tissues. Our findings unequivocally demonstrate that direct targeting of GRM1 is a necessary and highly specific driver event for CMF development.
  •  
5.
  • Koch, Raphael, et al. (författare)
  • Zoledronic Acid Add-on Therapy for Standard-Risk Ewing Sarcoma Patients in the Ewing 2008R1 Trial
  • 2023
  • Ingår i: Clinical cancer research : an official journal of the American Association for Cancer Research. - 1078-0432. ; 29:24, s. 5057-5068
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: The phase III, open-label, prospective, multicenter, randomized Ewing 2008R1 trial (EudraCT2008-003658-13) was conducted in 12 countries to evaluate the effect of zoledronic acid (ZOL) maintenance therapy compared with no add-on regarding event-free survival (EFS, primary endpoint) and overall survival (OS) in standard-risk Ewing sarcoma (EWS). PATIENTS AND METHODS: Eligible patients had localized EWS with either good histologic response to induction chemotherapy and/or small tumors (<200 mL). Patients received six cycles of VIDE induction and eight cycles of VAI (male) or eight cycles of VAC (female) consolidation. ZOL treatment started parallel to the sixth consolidation cycle. Randomization was stratified by tumor site (pelvis/other). The two-sided adaptive inverse-normal four-stage design (planned sample size 448 patients, significance level 5%, power 80%) was changed after the first interim analysis using the Müller-Schäfer method. RESULTS: Between April 2010 and November 2018, 284 patients were randomized (142 ZOL/142 no add-on). With a median follow-up of 3.9 years, EFS was not significantly different between ZOL and no add-on group in the adaptive design (HR, 0.74; 95% CI, 0.43-1.28, P = 0.27, intention-to-treat). Three-year EFS rates were 84.0% (95% CI, 77.7%-90.8%) for ZOL vs. 81.7% (95% CI, 75.2%-88.8%) for no add-on. Results were similar in the per-protocol collective. OS was not different between groups. The 3-year OS was 92.8% (95% CI, 88.4%-97.5%) for ZOL and 94.6% (95% CI, 90.9%-98.6%) for no add-on. Noticeable more renal, neurologic, and gastrointestinal toxicities were observed for ZOL (P < 0.05). Severe renal toxicities occurred more often in the ZOL arm (P = 0.003). CONCLUSIONS: In patients with standard-risk localized EWS, there is no additional benefit from maintenance treatment with ZOL.
  •  
6.
  • Olsson, Linda, et al. (författare)
  • Clonal Evolution through Loss of Chromosomes and Subsequent Polyploidization in Chondrosarcoma.
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.
  •  
7.
  • Pansuriya, Twinkal C., et al. (författare)
  • Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:12, s. 1256-1261
  • Tidskriftsartikel (refereegranskat)abstract
    • Ollier disease and Maffucci syndrome are non-hereditary skeletal disorders characterized by multiple enchondromas (Ollier disease) combined with spindle cell hemangiomas (Maffucci syndrome). We report somatic heterozygous mutations in IDH1 (c.394C>T encoding an R132C substitution and c.395G>A encoding an R132H substitution) or IDH2 (c.516G>C encoding R172S) in 87% of enchondromas (benign cartilage tumors) and in 70% of spindle cell hemangiomas (benign vascular lesions). In total, 35 of 43 (81%) subjects with Ollier disease and 10 of 13 (77%) with Maffucci syndrome carried IDH1 (98%) or IDH2 (2%) mutations in their tumors. Fourteen of 16 subjects had identical mutations in separate lesions. Immunohistochemistry to detect mutant IDH1 R132H protein suggested intraneoplastic and somatic mosaicism. IDH1 mutations in cartilage tumors were associated with hypermethylation and downregulated expression of several genes. Mutations were also found in 40% of solitary central cartilaginous tumors and in four chondrosarcoma cell lines, which will enable functional studies to assess the role of IDH1 and IDH2 mutations in tumor formation.
  •  
8.
  • Romeo, Salvatore, et al. (författare)
  • Malignant fibrous histiocytoma and fibrosarcoma of bone: a re-assessment in the light of currently employed morphological, immunohistochemical and molecular approaches
  • 2012
  • Ingår i: Virchows Archiv: an international journal of pathology. - : Springer Science and Business Media LLC. - 1432-2307. ; 461:5, s. 561-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant fibrous histiocytoma (MFH) and fibrosarcoma (FS) of bone are rare malignant tumours and contentious entities. Sixty seven cases labelled as bone MFH (57) and bone FS (10) were retrieved from five bone tumour referral centres and reviewed to determine whether recent advances allowed for reclassification and identification of histological subgroups with distinct clinical behaviour. A panel of immunostains was applied: smooth muscle actin, desmin, h-caldesmon, cytokeratin AE1-AE3, CD31, CD34, CD68, CD163, CD45, S100 and epithelial membrane antigen. Additional fluorescence in situ hybridisation and immunohistochemistry were performed whenever appropriate. All cases were reviewed by six bone and soft tissue pathologists and a consensus was reached. Follow-up for 43 patients (median 42 months, range 6-223 months) was available. Initial histological diagnosis was reformulated in 18 cases (26.8 %). Seven cases were reclassified as leiomyosarcoma, six as osteosarcoma, three as myxofibrosarcoma and one each as embryonal rhabdomyosarcoma and interdigitating dendritic cell sarcoma. One case showed a peculiar biphasic phenotype with epithelioid nests and myofibroblastic spindle cells. Among the remaining 48 cases, which met the WHO criteria for bone FS and bone MFH, we identified five subgroups. Seven cases were reclassified as undifferentiated pleomorphic sarcoma (UPS) and 11 as UPS with incomplete myogenic differentiation due to positivity for at least one myogenic marker. Six were reclassified as spindle cell sarcoma not otherwise specified. Among the remaining 24 cases, we identified a further two recurrent morphologic patterns: eight cases demonstrated a myoepithelioma-like phenotype and 16 cases a myofibroblastic phenotype. One of the myoepithelioma-like cases harboured a EWSR1-NFATC2 fusion. It appears that bone MFH and bone FS represent at best exclusion diagnoses.
  •  
9.
  • Saba, Karim H., et al. (författare)
  • Loss of NF2 defines a genetic subgroup of non-FOS-rearranged osteoblastoma
  • 2020
  • Ingår i: Journal of Pathology: Clinical Research. - : Wiley. - 2056-4538. ; 6:4, s. 231-237
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoblastoma is a locally aggressive tumour of bone. Until recently, its underlying genetic features were largely unknown. During the past two years, reports have demonstrated that acquired structural variations affect the transcription factor FOS in a high proportion of cases. These rearrangements modify the terminal exon of the gene and are believed to stabilise both the FOS transcript and the encoded protein, resulting in high expression levels. Here, we applied in-depth genetic analyses to a series of 29 osteoblastomas, including five classified as epithelioid osteoblastoma. We found recurrent homozygous deletions of the NF2 gene in three of the five epithelioid cases and in one conventional osteoblastoma. These events were mutually exclusive from FOS mutations. Structural variations were determined by deep whole genome sequencing and the number of FOS-rearranged cases was less than previously reported (10/23, 43%). One conventional osteoblastoma displayed a novel mechanism of FOS upregulation; bringing the entire FOS gene under the control of the WNT5A enhancer that is itself activated by FOS. Taken together, we show that NF2 loss characterises a subgroup of osteoblastomas, distinct from FOS-rearranged cases. Both NF2 and FOS are involved in regulating bone homeostasis, thereby providing a mechanistic link to the excessive bone growth of osteoblastoma.
  •  
10.
  • Wang, Lu, et al. (författare)
  • Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data
  • 2012
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 51:2, s. 127-139
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer gene fusions that encode a chimeric protein are often characterized by an intragenic discontinuity in the RNA\expression levels of the exons that are 5' or 3' to the fusion point in one or both of the fusion partners due to differences in the levels of activation of their respective promoters. Based on this, we developed an unbiased, genome-wide bioinformatic screen for gene fusions using Affymetrix Exon array expression data. Using a training set of 46 samples with different known gene fusions, we developed a data analysis pipeline, the Fusion Score (FS) model, to score and rank genes for intragenic changes in expression. In a separate discovery set of 41 tumor samples with possible unknown gene fusions, the FS model generated a list of 552 candidate genes. The transcription factor gene NCOA2 was one of the candidates identified in a mesenchymal chondrosarcoma. A novel HEY1-NCOA2 fusion was identified by 5' RACE, representing an in-frame fusion of HEY1 exon 4 to NCOA2 exon 13. RT-PCR or FISH evidence of this HEY1-NCOA2 fusion was present in all additional mesenchymal chondrosarcomas tested with a definitive histologic diagnosis and adequate material for analysis (n = 9) but was absent in 15 samples of other subtypes of chondrosarcomas. We also identified a NUP107-LGR5 fusion in a dedifferentiated liposarcoma but analysis of 17 additional samples did not confirm it as a recurrent event in this sarcoma type. The novel HEY1-NCOA2 fusion appears to be the defining and diagnostic gene fusion in mesenchymal chondrosarcomas. (C) 2011 Wiley Periodicals, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy