SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brännström Ioana Onut) "

Sökning: WFRF:(Brännström Ioana Onut)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alfjorden, Anders, et al. (författare)
  • Identification of a new gregarine parasite [Apicomplexa, Alveolata] in mass mortality events of freshwater pearl mussels (Margaritifera margaritifera)
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The freshwater pearl mussel (FPM) Margaritifera margaritifera is a Holarctic species with key roles in river ecosystems. Although of highly ecological importance the species is globally threatened and reaching nearing extinction in Europe. FPM is particularly vulnerable to fluctuations of environmental conditions, being entirely dependent of highly oxygenated streams with clear running water. Therefore anthropogenic activities resulting in habitat loss or affecting water quality such as sedimentation, eutrophication, or acidification of streams have been viewed as important causes of the mass mortality events in FPM.  However, in many of these investigations, possible infections from protist parasites were never considered. Here report on a novel parasite associated with several population losses in Swedish rivers. Phylogenetic analysis of the first molecular data for this parasite (18S rDNA gene) revealed that it is related to a terrestrial group of gregarines (Apicomplexa), specifically to parasites of tadpoles belonging to the genus Nematopsis. Further investigations of environmental data revealed the presence of this parasite in Canadian peat bogs and Swedish lakes. We describe the parasite using histology, in-situ hybridization, and transmission electron microscopy and propose a tentative life cycle within the FPM host. Together, our results identify for the first time a pathogenic agent that maybe responsible for the steady decline of a critical animal species in freshwater ecosystems worldwide.
  •  
2.
  • Brännström, Ioana Onut, et al. (författare)
  • Thamnolia tundrae sp nov., a cryptic species and putative glacial relict
  • 2018
  • Ingår i: The Lichenologist. - : Cambridge University Press. - 0024-2829 .- 1096-1135. ; 50:1, s. 59-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The lichen species of the genus Thamnolia, with their striking wormlike thalli and frequent occurrence in arctic and tundra environments, have often been debated with regard to the use of chemistry in lichen taxonomy. Phylogenetic studies have arrived at different conclusions as to the recognition of species in the genus, but in a recent study based on the analyses of six nuclear markers (genes or noncoding regions) of a worldwide sample of Thamnolia, we showed the existence of three well-supported lineages with two different chemistries and geographical distributions. Here, we present two analyses based on ITS and three markers, respectively, which were extended from the study mentioned above to include type specimens and additional Thamnolia strains and taxa. In these analyses the same three clades were retrieved. A putative DEAD-box helicase is used here for the first time as an informative phylogenetic marker to provide taxonomic resolution at species level. The distribution of morphological and chemical characters across the phylogeny was analyzed and it was concluded that three morphologically cryptic, but genetically well supported, species occur: T. vermicularis s. str., T. subuliformis s. str. and T. tundrae sp. nov. Thamnolia vermicularis s. str. contains individuals with uniform secondary chemistry (producing thamnolic acid) and a rather limited distribution in the European Alps, Tatra Mts and the Western Carpathians, a distribution which might result from glacial survival in an adjacent refugium/refugia. Thamnolia subuliformis s. str. is widely distributed in all hemispheres and the samples contain two chemotypes (either with thamnolic or squamatic acids). Thamnolia tundrae is described as new; it produces baeomycesic and squamatic acids, and has a distribution limited to the arctic tundra of Eurasia extending to the Aleutian Islands in North America. It may have survived the latest glaciation in coastal refugia near its present distribution. Thus, secondary chemistry alone is not suitable for characterizing species in Thamnolia, secondary chemistry and geographical origin are informative, and the ITS region can be confidently used for species recognition. Nomenclatural notes are given on several other names that have been used in Thamnolia.
  •  
3.
  • Hensen, Noah, et al. (författare)
  • Genome-scale phylogeny and comparative genomics of the fungal order Sordariales
  • 2023
  • Ingår i: Molecular Phylogenetics and Evolution. - : Elsevier. - 1055-7903 .- 1095-9513. ; 189
  • Tidskriftsartikel (refereegranskat)abstract
    • The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking.In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chae-tomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi.
  •  
4.
  • Kotrschal, Alexander, et al. (författare)
  • Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain
  • 2013
  • Ingår i: Current Biology. - : Elsevier BV. - 0960-9822 .- 1879-0445. ; 23:2, s. 168-171
  • Tidskriftsartikel (refereegranskat)abstract
    • The large variation in brain size that exists in the animal kingdom has been suggested to have evolved through the balance between selective advantages of greater cognitive ability and the prohibitively high energy demands of a larger brain (the "expensive-tissue hypothesis" [1]). Despite over a century of research on the evolution of brain size, empirical support for the trade-off between cognitive ability and energetic costs is based exclusively on correlative evidence [2], and the theory remains controversial [3, 4]. Here we provide experimental evidence for costs and benefits of increased brain size. We used artificial selection for large and small brain size relative to body size in a live-bearing fish, the guppy (Poecilia reticulata), and found that relative brain size evolved rapidly in response to divergent selection in both sexes. Large-brained females outperformed small-brained females in a numerical learning assay designed to test cognitive ability. Moreover, large-brained lines, especially males, developed smaller guts, as predicted by the expensive-tissue hypothesis [1], and produced fewer offspring. We propose that the evolution of brain size is mediated by a functional trade-off between increased cognitive ability and reproductive performance and discuss the implications of these findings for vertebrate brain evolution.
  •  
5.
  • Kotrschal, Alexander, et al. (författare)
  • The mating brain : early maturing sneaker males maintain investment into the brain also under fast body growth in Atlantic salmon (Salmo salar)
  • 2014
  • Ingår i: Evolutionary Ecology. - : Springer Science and Business Media LLC. - 0269-7653 .- 1573-8477. ; 28:6, s. 1043-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that mating behaviours require high levels of cognitive ability. However, since investment into mating and the brain both are costly features, their relationship is likely characterized by energetic trade-offs. Empirical data on the subject remains equivocal. We investigated if early sexual maturation was associated with brain development in Atlantic salmon (Salmo salar), in which males can either stay in the river and sexually mature at a small size (sneaker males) or migrate to the sea and delay sexual maturation until they have grown much larger (anadromous males). Specifically, we tested how sexual maturation may induce plastic changes in brain development by rearing juveniles on either natural or ad libitum feeding levels. After their first season we compared brain size and brain region volumes across both types of male mating tactics and females. Body growth increased greatly across both male mating tactics and females during ad libitum feeding as compared to natural feeding levels. However, despite similar relative increases in body size, early maturing sneaker males maintained larger relative brain size during ad libitum feeding levels as compared to anadromous males and females. We also detected several differences in the relative size of separate brain regions across feeding treatments, sexes and mating strategies. For instance, the relative size of the cognitive centre of the brain, the telencephalon, was largest in sneaker males. Our data support that a large relative brain size is maintained in individuals that start reproduction early also during fast body growth. We propose that the cognitive demands during complex mating behaviours maintain a high level of investment into brain development in reproducing individuals.
  •  
6.
  • Onuţ-Brännström, Ioana, et al. (författare)
  • A Mitosome With Distinct Metabolism in the Uncultured Protist Parasite Paramikrocytos canceri (Rhizaria, Ascetosporea)
  • 2023
  • Ingår i: Genome Biology and Evolution. - : Oxford University Press. - 1759-6653 .- 1759-6653. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Ascetosporea are endoparasites of marine invertebrates that include economically important pathogens of aquaculture species. Owing to their often-minuscule cell sizes, strict intracellular lifestyle, lack of cultured representatives and minimal availability of molecular data, these unicellular parasites remain poorly studied. Here, we sequenced and assembled the genome and transcriptome of Paramikrocytos canceri, an endoparasite isolated from the European edible crab Cancer pagurus. Using bioinformatic predictions, we show that P. canceri likely possesses a mitochondrion-related organelle (MRO) with highly reduced metabolism, resembling the mitosomes of other parasites but with key differences. Like other mitosomes, this MRO is predicted to have reduced metabolic capacity and lack an organellar genome and function in iron–sulfur cluster (ISC) pathway-mediated Fe–S cluster biosynthesis. However, the MRO in P. canceri is uniquely predicted to produce ATP via a partial glycolytic pathway and synthesize phospholipids de novo through the CDP-DAG pathway. Heterologous gene expression confirmed that proteins from the ISC and CDP-DAG pathways retain mitochondrial targeting sequences that are recognized by yeast mitochondria. This represents a unique combination of metabolic pathways in an MRO, including the first reported case of a mitosome-like organelle able to synthesize phospholipids de novo. Some of these phospholipids, such as phosphatidylserine, are vital in other protist endoparasites that invade their host through apoptotic mimicry.
  •  
7.
  • Onuţ-Brännström, Ioana, et al. (författare)
  • A worldwide phylogeography of the whiteworm lichens Thamnolia reveals three lineages with distinct habitats and evolutionary histories
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:10, s. 3602-3615
  • Tidskriftsartikel (refereegranskat)abstract
    • Thamnolia is a lichenized fungus with an extremely wide distribution, being encountered in arctic and alpine environments in most continents. In this study, we used molecular markers to investigate the population structure of the fungal symbiont and the associated photosynthetic partner of Thamnolia. By analyzing molecular, morphological, and chemical variation among 253 specimens covering the species distribution range, we revealed the existence of three mycobiont lineages. One lineage (Lineage A) is confined to the tundra region of Siberia and the Aleutian Islands, a second (Lineage B) is found in the high alpine region of the Alps and the Carpathians Mountains, and a third (Lineage C) has a worldwide distribution and covers both the aforementioned ecosystems. Molecular dating analysis indicated that the split of the three lineages is older than the last glacial maximum, but the distribution ranges and the population genetic analyses suggest an influence of last glacial period on the present-day population structure of each lineage. We found a very low diversity of Lineage B, but a higher and similar one in Lineages A and C. Demographic analyses suggested that Lineage C has its origin in the Northern Hemisphere, possibly Scandinavia, and that it has passed through a bottleneck followed by a recent population expansion. While all three lineages reproduce clonally, recombination tests suggest rare or past recombination in both Lineages A and C. Moreover, our data showed that Lineage C has a comparatively low photobiont specificity, being found associated with four widespread Trebouxia lineages (three of them also shared with other lichens), while Lineages A and B exclusively harbor T. simplex s. lat. Finally, we did not find support for the recognition of taxa in Thamnolia based on either morphological or chemical characters.
  •  
8.
  •  
9.
  • Onuţ-Brännström, Ioana, et al. (författare)
  • Sharing of photobionts in sympatric populations of Thamnolia and Cetraria lichens : evidence from high-throughput sequencing
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we explored the diversity of green algal symbionts (photobionts) in sympatric populations of the cosmopolitan lichen-forming fungi Thamnolia and Cetraria. We sequenced with both Sanger and Ion Torrent High-Throughput Sequencing technologies the photobiont ITS-region of 30 lichen thalli from two islands: Iceland and Öland. While Sanger recovered just one photobiont genotype from each thallus, the Ion Torrent data recovered 10–18 OTUs for each pool of 5 lichen thalli, suggesting that individual lichens can contain heterogeneous photobiont populations. Both methods showed evidence for photobiont sharing between Thamnolia and Cetraria on Iceland. In contrast, our data suggest that on Öland the two mycobionts associate with distinct photobiont communities, with few shared OTUs revealed by Ion Torrent sequencing. Furthermore, by comparing our sequences with public data, we identified closely related photobionts from geographically distant localities. Taken together, we suggest that the photobiont composition in Thamnolia and Cetraria results from both photobiont-mycobiont codispersal and local acquisition during mycobiont establishment and/or lichen growth. We hypothesize that this is a successful strategy for lichens to be flexible in the use of the most adapted photobiont for the environment.
  •  
10.
  • Sørensen, Megan E. S., et al. (författare)
  • A novel kleptoplastidic symbiosis revealed in the marine centrohelid Meringosphaera with evidence of genetic integration
  • 2023
  • Ingår i: Current Biology. - : Elsevier. - 0960-9822 .- 1879-0445. ; 33:17, s. 3571-3584, e1-e6
  • Tidskriftsartikel (refereegranskat)abstract
    • Plastid symbioses between heterotrophic hosts and algae are widespread and abundant in surface oceans. They are critically important both for extant ecological systems and for understanding the evolution of plastids. Kleptoplastidy, where the plastids of prey are temporarily retained and continuously re-acquired, provides opportunities to study the transitional states of plastid establishment. Here, we investigated the poorly studied marine centrohelid Meringosphaera and its previously unidentified symbionts using culture-independent methods from environmental samples. Investigations of the 18S rDNA from single-cell assembled genomes (SAGs) revealed uncharacterized genetic diversity within Meringosphaera that likely represents multiple species. We found that Meringosphaera harbors plastids of Dictyochophyceae origin (stramenopiles), for which we recovered six full plastid genomes and found evidence of two distinct subgroups that are congruent with host identity. Environmental monitoring by qPCR and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) revealed seasonal dynamics of both host and plastid. In particular, we did not detect the plastids for 6 months of the year, which, combined with the lack of plastids in some SAGs, suggests that the plastids are temporary and the relationship is kleptoplastidic. Importantly, we found evidence of genetic integration of the kleptoplasts as we identified host-encoded plastid-associated genes, with evolutionary origins likely from the plastid source as well as from other alga sources. This is only the second case where host-encoded kleptoplast-targeted genes have been predicted in an ancestrally plastid-lacking group. Our results provide evidence for gene transfers and protein re-targeting as relatively early events in the evolution of plastid symbioses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy