SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bradley Larry D.) "

Sökning: WFRF:(Bradley Larry D.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Windhorst, Rogier A., et al. (författare)
  • JWST PEARLS. Prime extragalactic areas for reionization and lensing science : project overview and first results
  • 2023
  • Ingår i: Astronomical Journal. - : Institute of Physics (IOP). - 0004-6256 .- 1538-3881. ; 165:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μm galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μm. PEARLS is designed to be of lasting benefit to the community.
  •  
3.
  • Fudamoto, Yoshinobu, et al. (författare)
  • The Extended [C II] under Construction? : Observation of the Brightest High-z Lensed Star-forming Galaxy at z=6.2
  • 2024
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present results of [C ii] 158 μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ ∼ 20) star-forming galaxy, MACS0308-zD1 at z = 6.2078 ± 0.0002. The [C ii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [C ii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [C ii] is seen with an FWHM of 230 ± 50 km s−1. The broader [C ii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [C ii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [C ii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection of λ158μm dust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L⊙. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.
  •  
4.
  • Meena, Ashish Kumar, et al. (författare)
  • Two Lensed Star Candidates at z similar or equal to 4.8 behind the Galaxy Cluster MACS J0647.7+7015
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : Institute of Physics (IOP). - 2041-8205 .- 2041-8213. ; 944:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known, z (phot) similar or equal to 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least greater than or similar to 90 and greater than or similar to 50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of similar to[10(3)-10(5)] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of similar to 10,000 K, and similar to 12,000 K, respectively, and we show that such stars with masses greater than or similar to 20 M (circle dot) and greater than or similar to 50 M (circle dot), respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel at z (phot) similar or equal to 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.
  •  
5.
  • Meena, Ashish Kumar, et al. (författare)
  • Two Lensed Star Candidates at z ≃ 4.8 behind the Galaxy Cluster MACS J0647.7+7015
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 944:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known, zphot ≃ 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least ≳90 and ≳50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of ∼[103–105] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of ∼10,000 K, and ∼12,000 K, respectively, and we show that such stars with masses ≳20 M⊙ and ≳50 M⊙, respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel at zphot ≃ 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.
  •  
6.
  • Spatially Resolved Stellar Populations of 0.3 < z < 6.0 Galaxies in WHL 0137–08 and MACS 0647+70 Clusters as Revealed by JWST : How Do Galaxies Grow and Quench over Cosmic Time?
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 945:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the spatially resolved stellar populations of 444 galaxies at 0.3 < z < 6.0 in two clusters (WHL 0137–08 and MACS 0647+70) and a blank field, combining imaging data from the Hubble Space Telescope and JWST to perform spatially resolved spectral energy distribution (SED) modeling using ᴘɪXᴇᴅꜰɪᴛ. The high spatial resolution of the imaging data combined with magnification from gravitational lensing in the cluster fields allows us to resolve a large fraction of our galaxies (109) to subkiloparsec scales. At redshifts around cosmic noon and higher (2.5 ≲ z ≲ 6.0), we find mass-doubling times to be independent of radius, inferred from flat specific star formation rate (sSFR) radial profiles and similarities between the half-mass and half-SFR radii. At lower redshifts (1.5 ≲ z ≲ 2.5), a significant fraction of our star-forming galaxies shows evidence for nuclear starbursts, inferred from a centrally elevated sSFR and a much smaller half-SFR radius compared to the half-mass radius. At later epochs, we find more galaxies suppress star formation in their centers but are still actively forming stars in the disk. Overall, these trends point toward a picture of inside-out galaxy growth consistent with theoretical models and simulations. We also observe a tight relationship between the central mass surface density and global stellar mass with ∼0.38 dex scatter. Our analysis demonstrates the potential of spatially resolved SED analysis with JWST data. Future analysis with larger samples will be able to further explore the assembly of galaxy mass and the growth of their structures.
  •  
7.
  • Vanzella, Eros, et al. (författare)
  • JWST/NIRCam Probes Young Star Clusters in the Reionization Era Sunrise Arc
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 945:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Star cluster formation in the early universe and its contribution to reionization remains largely unconstrained to date. Here we present JWST/NIRCam imaging of the most highly magnified galaxy known at z ∼ 6, the Sunrise arc. We identify six young massive star clusters (YMCs) with measured radii spanning from ∼20 down to ∼1 pc (corrected for lensing magnification), estimated stellar masses of ∼106–7 M⊙, and ages of 1–30 Myr based on SED fitting to photometry measured in eight filters extending to rest frame 7000 Å. The resulting stellar mass surface densities are higher than 1000 M⊙ pc−2 (up to a few 105 M⊙ pc−2), and their inferred dynamical ages qualify the majority of these systems as gravitationally bound stellar clusters. The star cluster ages map the progression of star formation along the arc, with two evolved systems (≳10 Myr old) followed by very young clusters. The youngest stellar clusters (<5 Myr) show evidence of prominent Hβ+[O ııı] emission based on photometry with equivalent widths larger than >1000 Å rest frame and are hosted in a 200 pc sized star-forming complex. Such a region dominates the ionizing photon production with a high efficiency log(ξion [Hz erg-1]~25.7 . A significant fraction of the recently formed stellar mass of the galaxy (10%–30%) occurred in these YMCs. We speculate that such sources of ionizing radiation boost the ionizing photon production efficiency, which eventually carves ionized channels that might favor the escape of Lyman continuum radiation. The survival of some of the clusters would make them the progenitors of massive and relatively metal-poor globular clusters in the local universe.
  •  
8.
  • Vikaeus, Anton, et al. (författare)
  • To be, or not to be : Balmer breaks in high-z galaxies with JWST
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 529:2, s. 1299-1307
  • Tidskriftsartikel (refereegranskat)abstract
    • Standard models of structure formation allow us to predict the cosmic timescales relevant for the onset of star formation and the assembly history of galaxies at high redshifts (z > 10). The strength of the Balmer break represents a well-known diagnostic of the age and star formation history of galaxies, which enables us to compare observations with contemporary simulations – thus shedding light on the predictive power of our current models of star formation in the early Universe. Here, we measure the Balmer break strength for 23 spectroscopically confirmed galaxies at redshifts 6 ≲ z ≲ 12 using public JWST NIRSpec data from the cycle 1 GO 1433 and GO 2282 programmes (PI Coe), as well as public spectroscopic data from the JWST Deep Extragalactic Survey (JADES). We find that the range of observed Balmer break strengths agree well with that of current simulations given our measurement uncertainties. No cases of anomalously strong Balmer breaks are detected, and therefore no severe departures from the predictions of contemporary models of star formation. However, there are indications of a number of outliers in the observed distribution which have weaker Balmer breaks than predicted by simulations.
  •  
9.
  • Yabuta, Hikaru, et al. (författare)
  • Macromolecular organic matter in samples of the asteroid (162173) Ryugu
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 379:6634
  • Tidskriftsartikel (refereegranskat)abstract
    • Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugus parent body.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy