SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bragós Ramón) "

Sökning: WFRF:(Bragós Ramón)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, Javier, 1982-, et al. (författare)
  • AD5933-based Spectrometer for Electrical Bioimpedance Applications
  • 2010
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6596. ; 224:1, s. 012011-
  • Konferensbidrag (refereegranskat)abstract
    • o build an Electrical Bioimpedance (EBI) spectrometer using the Impedance Measurement System-On-Chip AD5933 together with a 4-Electrode Analog Front End (4E-AFE) has been proven practicable. Such small measurement devices can make possible several new applications of EBI technology, especially when combined with functional textiles, which can enable wearable applications for personal health and home monitoring. After the implementation and functional validation of the 4E-AFE-enabled spectrometer, the next natural step is to validate for which EBI applications the 4E-AFE-enabled system is suitable. To test the applicability of this novel spectrometer on several EBI applications, 2R1C equivalent models have been experimentally obtained and impedance spectroscopy measurements have been performed with the system under study and with the SFB7 EBI spectrometer manufactured by ImpediMed. The 2R1C circuit parameters have been estimated with the BioImp software from the spectra obtained with both EBI spectrometers and the estimated values have been compared with the original values used in each circuit model implementation. The obtained results indicated that the 4E-AFE-enabled system cannot beat the performance of the SFB7 in accuracy but it performs better in preciseness. In any case the overall performance indicates that the 4E-AFE-enabled system can perform spectroscopy measurements in the frequency range from 5 to 100 kHz.
  •  
2.
  • Macias, Raul, et al. (författare)
  • Performance of the Load-in-the-Loop Single Op-Amp Voltage Controlled Current Source from the Op-Amp Parameters
  • 2010
  • Ingår i: Journal of Physics: Conference Series. - : Institute of Physics Publishing Ltd.. - 1742-6596 .- 1742-6588.
  • Konferensbidrag (refereegranskat)abstract
    • In recent years, Electrical Bioimpedance (EBI) methods have gained importance. These methods are often based on obtaining impedance spectrum in the range of β-dispersion, i.e. from a few kHz up to some MHz. To measure EBI a constant current is often injected and the voltage across the tissue under study (TUS) is recorded. Due to the performance of the current source influences the performance of the entire system, in terms of frequency range, several designs have been implemented and studied. In this paper the basic structure of a Voltage-Controlled Current Source (VCCS) based on a single Op-Amp in inverter configuration with a floating load, known as load-in-the-loop current source, is revisited and studied deeply. We focus on the dependence of the output impedance with the circuit parameters, i.e. the feedback resistor and the inverter-input resistor, and the Op-Amp main parameters, i.e. open loop gain, CMRR and input impedance. After obtaining the experimental results and comparing to the theoretical and simulated ones, they confirm the design under study can be a good solution for multi-frequency wideband EBI applications because of higher values of the output impedance than 100kΩ at 1MHz are obtained. Furthermore, an enhancement of the basic design, using a current conveyor as a first stage, is proposed, studied and implemented.
  •  
3.
  • Marquez Ruiz, Juan Carlos (författare)
  • Sensor-Based Garments that Enable the Use of Bioimpedance Technology : Towards PersonalizedHealthcare Monitoring.
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Functional garments for physiological sensing purposes have been utilized in several disciplinesi.e. sports, firefighting, military and medical. In most of the cases textile electrodes (Textrodes)embedded in the garment are employed to monitor vital signs and other physiologicalmeasurements. Electrical Bioimpedance (EBI) is a non-invasive and effective technology that canbe used for detection and supervision of different health conditions. In some specific applicationssuch as body composition assessment EBIS has shown encouraging results proving good degreeof effectiveness and reliability. In a similar way Impedance Cardiography (ICG) is anothermodality of EBI primarily concerned with the determination of Stroke Volume SV, indices ofcontractility, and other aspects of hemodynamics.EBI technology in the previously mentioned modalities can benefit from a integration with agarment; however, a successful implementation of EBI technology depends on the goodperformance of textile electrodes. The main weakness of Textrodes is a deficient skin-electrodeinterface which produces a high degree of sensitivity to signal disturbances. This sensitivity canbe reduced with a suitable selection of the electrode material and an intelligent and ergonomicgarment design that ensures an effective skin-electrode contact area.This research work studies the performance of textile electrodes and garments for EBIspectroscopy for Total Body Assessment and Transthoracic Electrical Bioimpedance (TEB) forcardio monitoring. Their performance is analyzed based on impedance spectra, estimation ofparameters, influence of electrode polarization impedance Zep and quality of the signals using asreference Ag/AgCl electrodes. The study includes the analysis of some characteristics of thetextile electrodes such as conductive material, skin-electrode contact area size and fabricconstruction.The results obtained in this research work present evidence that textile garments with a dry skinelectrodeinterface like the ones used in research produce reliable EBI measurements in bothmodalities: BIS for Total Body Assessment and TEB for Impedance Cardiography. Textiletechnology, if successfully integrated, may enable the utilization of EBI in both modalities andconsequently implementing wearable applications for home and personal health monitoring.
  •  
4.
  • Seoane, Fernando, 1976-, et al. (författare)
  • An analog front-end enables electrical impedance spectroscopy system on-chip for biomedical applications
  • 2008
  • Ingår i: Physiological Measurement. - : Institute of Physics Publishing (IOPP). - 0967-3334 .- 1361-6579. ; 29:6, s. S267-78
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing number of applications of electrical bioimpedance measurements in biomedical practice, together with continuous advances in textile technology, has encouraged several researchers to make the first attempts to develop portable, even wearable, electrical bioimpedance measurement systems. The main target of these systems is personal and home monitoring. Analog Devices has made available AD5933, a new system-on-chip fully integrated electrical impedance spectrometer, which might allow the implementation of minimum-size instrumentation for electrical bioimpedance measurements. However, AD5933 as such is not suitable for most applications of electrical bioimpedance. In this work, we present a relatively simple analog front-end that adapts AD5933 to a four-electrode strategy, allowing its use in biomedical applications for the first time. The resulting impedance measurements exhibit a very good performance in aspects like load dynamic range and accuracy. This type of minimum-size, system-on-chip-based bioimpedance measurement system would lead researchers to develop and implement light and wearable electrical bioimpedance systems for home and personal health monitoring applications, a new and huge niche for medical technology development.
  •  
5.
  •  
6.
  • Seoane, Fernando, 1976-, et al. (författare)
  • Current Source Design for Electrical Bioimpedance Spectroscopy
  • 2008
  • Ingår i: Encyclopedia of Healthcare Information Systems. - : IGI Global. - 9781599048895 ; , s. 359-367
  • Bokkapitel (refereegranskat)abstract
    • The passive electrical properties of biological tissue have been studied since the 1920s, and with time, the use of Electrical Bioimpedance (EBI) in medicine has successfully spread (Schwan, 1999). Since the electrical properties of tissue are frequency-dependent (Schwan, 1957), observations of the bioimpedance spectrum have created the discipline of Electrical Impedance Spectroscopy (EIS), a discipline that has experienced a development closely related to the progress of electronic instrumentation and the dissemination of EBI technology through medicine.
  •  
7.
  • Seoane, Fernando, 1976-, et al. (författare)
  • Current Source for Multifrequency Broadband Electrical Bioimpedance Spectroscopy Systems : A Novel Approach
  • 2006
  • Ingår i: 2006 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vols 1-15. - 1424400325 - 9781424400324 ; , s. 5121-5125
  • Konferensbidrag (refereegranskat)abstract
    • New research and clinical applications of broadband electrical bioimpedance spectroscopy arise; increasing the upper limit frequency used in the measurement systems. The current source, an essential block of an electrical bioimpedance impedance analyzer, must have a large-enough output impedance at any frequency of operation to keep the output current constant regardless of the value of working load. In this paper a novel approach to increase the output impedance of a common voltage controlled current source is proposed. The circuit is analyzed, implemented and tested. The results, remarking the significant effect of the circuit parasitic capacitances, show a clear increment of the output impedance, but smaller than the originally expected
  •  
8.
  • Seoane, Fernando, 1976-, et al. (författare)
  • Current Source for Wideband Electrical Bioimpedance Spectroscopy Based on a Single Operational Amplifier
  • 2006
  • Ingår i: WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2006, VOL 14, PTS 1-6. - : IFMBE. - 9783540368397 ; , s. 707-710
  • Konferensbidrag (refereegranskat)abstract
    • Traditionally, measurements of electrical bioimpedance for medical diagnostic purposes have used only low frequencies, usually below 100 kHz. The analysis focused only on the resistive part of the impedance; very often at low frequencies the reactive part of the impedance is negligible. Recent studies of the electrical bioimpedance spectrum, both real and imaginary parts, have indicated new potential applications e.g. detection of meningitis, skin cancer assessment and brain cellular edema detection. An important functional unit in a wideband impedance spectrometer is the current source used to inject the current into the tissue under study. A current source must provide an output current virtually constant over the frequency range of interest and independent of the load at the output. Several designs have been proposed over the years but the performance of them all degraded markedly near bellow 1 MHz e.g. Ackmann in 1993, Bragos et al in 1994 and Bertemes-Filho et al in 2000. The development of electronic technology has made available devices that allow us to obtain a current source with large output impedance, larger than 100 k Omega, above I MHz and based in a simple single Op-Amp circuit topology. Simulation results and experimental measurements are compared and the most important parameters of the VCCS are analytically studied and experimentally tested, including the dependency to changes in the circuit elements and the incidence of the Op-Amp parameters on the current source features.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy