SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brain D.) "

Sökning: WFRF:(Brain D.)

  • Resultat 1-10 av 40
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Jakosky, B. M., et al. (författare)
  • The Mars Atmosphere and Volatile Evolution (MAVEN) Mission
  • 2015
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 195:1-4, s. 3-48
  • Forskningsöversikt (refereegranskat)abstract
    • The MAVEN spacecraft launched in November 2013, arrived at Mars in September 2014, and completed commissioning and began its one-Earth-year primary science mission in November 2014. The orbiter's science objectives are to explore the interactions of the Sun and the solar wind with the Mars magnetosphere and upper atmosphere, to determine the structure of the upper atmosphere and ionosphere and the processes controlling it, to determine the escape rates from the upper atmosphere to space at the present epoch, and to measure properties that allow us to extrapolate these escape rates into the past to determine the total loss of atmospheric gas to space through time. These results will allow us to determine the importance of loss to space in changing the Mars climate and atmosphere through time, thereby providing important boundary conditions on the history of the habitability of Mars. The MAVEN spacecraft contains eight science instruments (with nine sensors) that measure the energy and particle input from the Sun into the Mars upper atmosphere, the response of the upper atmosphere to that input, and the resulting escape of gas to space. In addition, it contains an Electra relay that will allow it to relay commands and data between spacecraft on the surface and Earth.
  •  
4.
  •  
5.
  • Jakosky, B. M., et al. (författare)
  • MAVEN observations of the response of Mars to an interplanetary coronal mass ejection
  • 2015
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 350:6261
  • Tidskriftsartikel (refereegranskat)abstract
    • Coupling between the lower and upper atmosphere, combined with loss of gas from the upper atmosphere to space, likely contributed to the thin, cold, dry atmosphere of modern Mars. To help understand ongoing ion loss to space, the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft made comprehensive measurements of the Mars upper atmosphere, ionosphere, and interactions with the Sun and solar wind during an interplanetary coronal mass ejection impact in March 2015. Responses include changes in the bow shock and magnetosheath, formation of widespread diffuse aurora, and enhancement of pick-up ions. Observations and models both show an enhancement in escape rate of ions to space during the event. Ion loss during solar events early in Mars history may have been a major contributor to the long-term evolution of the Mars atmosphere.
  •  
6.
  •  
7.
  • Dieval, C., et al. (författare)
  • MARSIS remote sounding of localized density structures in the dayside Martian ionosphere : A study of controlling parameters
  • 2015
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:9, s. 8125-8145
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhanced topside electron densities in the dayside Martian ionosphere have been repetitively observed in areas of near-radial crustal magnetic fields, for periods of tens of days, indicating their long-term spatial and temporal stability despite changing solar wind conditions. We perform a statistical study of these density structures using the ionospheric mode of the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) onboard Mars Express. We estimate the apparent extents of these structures relative to the altitude of the surrounding ionosphere. The apex of the density structures often lies higher than the surrounding ionosphere (median vertical extent of 18km), which indicates upwellings. These structures are much wider than they are high, with latitudinal scales of several degrees. The radar reflector regions are observed above both moderate and strong magnetic anomalies, and their precise locations and latitudinal extents match quite well with the locations and latitudinal extents of magnetic structures of given magnetic polarity (oblique to vertical fields), which happen to be regions where the field lines are open part of the time. The majority of the density structures occur in regions where ionospheric plasma is dominant, indicating closed field regions shielded from shocked solar wind plasma.
  •  
8.
  •  
9.
  •  
10.
  • Berntsen, Peter, 1974, et al. (författare)
  • Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells
  • 2010
  • Ingår i: Journal of the Royal Society Interface. - : The Royal Society. - 1742-5689 .- 1742-5662. ; 7:Suppl 3
  • Tidskriftsartikel (refereegranskat)abstract
    • The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 mu m) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 mu m), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 mu M did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 40

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy