SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brandeker Alexis Docent) "

Sökning: WFRF:(Brandeker Alexis Docent)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cataldi, Gianni, 1986- (författare)
  • Debris disks and the search for life in the universe
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Circumstellar debris disks are the extrasolar analogues of the asteroid belt and the Kuiper belt. These disks consist of comets and leftover planetesimals that continuously collide to produce copious amounts of circumstellar dust that can be observed as infrared excess or in resolved imaging. As an obvious outcome of the planet formation process, debris disks can help us constrain planet formation theories and learn about the history of our own solar system. Structures in the disks such as gaps or warps can hint at the presence of planets. Thus, the study of debris disks is an important branch of exoplanetary science. In this thesis, some aspects of debris disks are considered in detail.A handful of debris disks show observable amounts of gas besides the dust. One such case is the edge-on debris disk around the young A-type star β Pictoris, where the gas is thought to be of secondary origin, i.e. derived from the dust itself. By observing this gas, we can thus learn something about the dust, and therefore about the building blocks of planets. In paper I, spectrally resolved observations of C II emission with Herschel/HIFI are presented. The line profile is used to constrain the spatial distribution of carbon gas in the disk, which helps understanding the gas producing mechanism. In paper II, we analyse C II and O I emission detected with Herschel/PACS and find that the oxygen must be located in a relatively dense region, possibly similar to the CO clump seen by ALMA. An upcoming analysis of our ALMA C I observations will give us a clearer picture of the system.Another famous debris disk is found around the nearby, 440 Myr old A-star Fomalhaut. Its morphology is that of an eccentric debris belt with sharp edges, suggesting shaping by a planet. However, gas-dust interactions may result in a similar morphology without the need to invoke planets. We test this possibility in paper III by analysing non-detections of C II and O I emission by Herschel/PACS. We find that there is not enough gas present to efficiently sustain gas-dust interactions, implying that the morphology of the Fomalhaut belt is due to a yet unseen planet or alternatively stellar encounters.One of the biggest challenges in exoplanetary research is to answer the question whether there are inhabited worlds other than the Earth. With the number of known rocky exoplanets in the habitable zone increasing rapidly, we might actually be able to answer this question in the coming decades. Different approaches exist to detect the presence of life remotely, for example by studying exoplanetary atmospheres or by analysing light reflected off the surface of an exoplanet. In paper IV, we study whether biosignatures (for example, certain minerals or microorganisms) ejected into a circumstellar debris disk by an impact event could be detected. We consider an impact similar to the Chicxulub event and model the collisional evolution of the ejected debris. Dust from such an event can potentially be detected by current telescopes, but analysis of the debris composition has to wait for future, advanced instruments.
  •  
2.
  • Cataldi, Gianni, 1986- (författare)
  • Debris disks from an astronomical and an astrobiological viewpoint
  • 2013
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this licentiate thesis, I consider debris disks from an observational, astronomical viewpoint, but also discuss a potential astrobiological application. Debris disks are essentially disks of dust and rocks around main-sequence stars, analogue to the Kuiper- or the asteroid belt in our solar system. Their observation and theoretical modeling can help to constrain planet formation models and help in the understanding of the history of the solar system. After a general introduction into the field of debris disks and some basic debris disk physics, the thesis concentrates on the observation of gas in debris disks. The possible origins of this gas and its dynamics are discussed and it is considered what it can tell us about the physical conditions in the disk and possibly about the dust composition. In this way, the paper associated with this thesis (dealing with the gas in the β Pic debris disk) is set into context. More in detail, we observed the CII emission originating from the carbon-rich β Pic disk with Herschel HIFI and attempted to constrain the spatial distribution of the gas from the shape of the emission line. This is necessary since the gas production mechanism is currently unknown, but can be constraint by obtaining information about the spatial profile of the gas. The last part of the thesis describes our preliminary studies of the possibility of a debris disk containing biomarkers, created by a giant impact on a life-bearing exoplanet.
  •  
3.
  • Cavallius, Maria, 1986- (författare)
  • Gas in Debris Disks
  • 2020
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy