SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brander L) "

Sökning: WFRF:(Brander L)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jokinen, H., et al. (författare)
  • Global Burden of Small Vessel Disease-Related Brain Changes on MRI Predicts Cognitive and Functional Decline
  • 2020
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 51:1, s. 170-178
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose- Cerebral small vessel disease is characterized by a wide range of focal and global brain changes. We used a magnetic resonance imaging segmentation tool to quantify multiple types of small vessel disease-related brain changes and examined their individual and combined predictive value on cognitive and functional abilities. Methods- Magnetic resonance imaging scans of 560 older individuals from LADIS (Leukoaraiosis and Disability Study) were analyzed using automated atlas- and convolutional neural network-based segmentation methods yielding volumetric measures of white matter hyperintensities, lacunes, enlarged perivascular spaces, chronic cortical infarcts, and global and regional brain atrophy. The subjects were followed up with annual neuropsychological examinations for 3 years and evaluation of instrumental activities of daily living for 7 years. Results- The strongest predictors of cognitive performance and functional outcome over time were the total volumes of white matter hyperintensities, gray matter, and hippocampi (P<0.001 for global cognitive function, processing speed, executive functions, and memory and P<0.001 for poor functional outcome). Volumes of lacunes, enlarged perivascular spaces, and cortical infarcts were significantly associated with part of the outcome measures, but their contribution was weaker. In a multivariable linear mixed model, volumes of white matter hyperintensities, lacunes, gray matter, and hippocampi remained as independent predictors of cognitive impairment. A combined measure of these markers based on Z scores strongly predicted cognitive and functional outcomes (P<0.001) even above the contribution of the individual brain changes. Conclusions- Global burden of small vessel disease-related brain changes as quantified by an image segmentation tool is a powerful predictor of long-term cognitive decline and functional disability. A combined measure of white matter hyperintensities, lacunar, gray matter, and hippocampal volumes could be used as an imaging marker associated with vascular cognitive impairment.
  •  
3.
  •  
4.
  • Mizuki, T., et al. (författare)
  • Orbital Characterization of GJ1108A System, and Comparison of Dynamical Mass with Model-derived Mass for Resolved Binaries
  • 2018
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 865:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report an orbital characterization of GJ1108Aab that is a low-mass binary system in the pre-main-sequence phase. Via the combination of astrometry using adaptive optics and radial velocity measurements, an eccentric orbital solution of e = 0.63 is obtained, which might be induced by the Kozai-Lidov mechanism with a widely separated GJ1108B system. Combined with several observed properties, we confirm that the system is indeed young. Columba is the most probable moving group, to which the GJ1108A system belongs, although its membership to the group has not been established. If the age of Columba is assumed for GJ1108A, the dynamical masses of both GJ1108Aa and GJ1108Ab (M-dynamical,M-GJ1108Aa= 0.72 +/- 0.04 M-circle dot and M-dynamical,M-GJ1108Ab = 0.30 +/- 0.03 M-circle dot) are more massive than what an evolutionary model predicts based on the age and luminosities. We consider that the discrepancy in mass comparison can be attributed to an age uncertainty; the system is likely older than stars in Columba, and effects that are not implemented in classical models such as accretion history and magnetic activity are not preferred to explain the mass discrepancy. We also discuss the performance of the evolutionary model by compiling similar low-mass objects in the evolutionary state based on the literature. Consequently, it is suggested that the current model on average reproduces the mass of resolved low-mass binaries without any significant offsets.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Grigoriadis, K., et al. (författare)
  • Improving the recycling rate of the construction industry
  • 2019
  • Ingår i: Sustainable Construction Materials and Technologies. - : International Committee of the SCMT conferences.
  • Konferensbidrag (refereegranskat)abstract
    • Construction and Demolition Waste (CDW) accounts for approximately 25-30% of all waste generated across Europe each year. However, Waste Framework Directive 2008/98/EC requires from all EU member states to achieve at least 70% re-use, recycling or other recovery of non-hazardous CDW by 2020. In response, the Horizon 2020 RE4 Project (REuse and REcycling of CDW materials and structures in energy efficient pREfabricated elements for building REfurbishment and construction) consortium was set up. Its main aims are to assess the quality of various CDW fractions (e.g. mineral aggregate, timber, plastics, silt & clay), improve the quality of mineral aggregates and develop different building elements/components which contain at least 65% of CDW. Innovative building concepts will also be developed in an effort to improve recycling rates of future buildings through the use of prefabrication and modular design. The developed products and technologies will be assessed in a number of test sites by building 2-storey demonstration houses.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy