SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brandi Maya) "

Sökning: WFRF:(Brandi Maya)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Brandi, Maya, et al. (författare)
  • Multiscale modeling through MUSIC multi-simulation : Modeling a dendritic spine using MOOSE and NeuroRD
  • 2011
  • Ingår i: Front. Neuroinform. Conference Abstract. - : Frontiers Media SA.
  • Konferensbidrag (refereegranskat)abstract
    • The nervous system encompasses structure and phenomena at different spatial and temporal scales from molecule to behavior. In addition, different scales are described by different physical and mathematical formalisms. The dynamics of second messenger pathways can be formulated as stochastic reaction-diffusion systems [1] while the electrical dynamics of the neuronal membrane is often described by compartment models and the Hodgkin-Huxley formalism. In neuroscience, there is an increasing need and interest to study multi-scale phenomena where multiple scales and physical formalisms are covered by a single model. While there exists simulators/frameworks, such as GENESIS and MOOSE [3], which span such scales (kinetikit/HH-models), most software applications are specialized for a given domain. Here, we report about initial steps towards a framework for multi-scale modeling which builds on the concept of multi-simulations [2]. We aim to provide a standard API and communication framework allowing parallel simulators targeted at different scales and/or different physics to communicate on-line in a cluster environment. Specifically, we show prototype work on simulating the effect on receptor induced cascades on membrane excitability. Electrical properties of a compartment model is simulated in MOOSE, while receptor induced cascades are simulated in NeuroRD  [4,7] . In a prototype system, the two simulators are connected using PyMOOSE [5] and JPype [6]. The two models with their different physical properties (membrane currents in MOOSE, molecular biophysics in NeuroRD), are joined into a single model system.  We demonstrate the interaction of the numerical solvers of two simulators (MOOSE, NeuroRD) targeted at different spatiotemporal scales and different physics while solving a multi-scale problem. We analyze some of the problems that may arise in multi-scale multi-simulations and present requirements for a generic API for parallel solvers. This work represents initial steps towards a flexible modular framework for simulation of large-scale multi-scale multi-physics problems in neuroscience. References 1. Blackwell KT: An efficient stochastic diffusion algorithm for modeling second messengers in dendrites and spines. J Neurosci Meth 2006, 157: 142-153. 2. Djurfeldt M, Hjorth J, Eppler JM, Dudani N, Helias M, Potjans TC, Bhalla US, Diesmann M, Hellgren Kotaleski J, Ekeberg Ö: Run-Time Interoperability Between Neural Network Simulators Based on the MUSIC Framework. Neurinform 2010, 8: 43-60. 3. Dudani N, Ray S, George S, Bhalla US: Multiscale modeling and interoperability in MOOSE. Neuroscience 2009, 10(Suppl 1): 54. 4. Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, Kim M, Zaccolo M, Blacwell KT: The Role of Type 4 Phosphdiesterases in Generating Microdomains of cAMP: Large Scale Stochastic Simulations.
  •  
3.
  • Conti, David, V, et al. (författare)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • Ingår i: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
4.
  • James, Tojo, et al. (författare)
  • Impact of genetic risk loci for multiple sclerosis on expression of proximal genes in patients
  • 2018
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 27:5, s. 912-928
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as multiple sclerosis (MS). As a large proportion of expression quantitative trait loci (eQTLs) are context-specific, we performed RNA-Seq in peripheral blood mononuclear cells from MS patients (n = 145) to identify eQTLs in regions centered on 109 MS risk single nucleotide polymorphisms and 7 associated human leukocyte antigen variants. We identified 77 statistically significant eQTL associations, including pseudogenes and non-coding RNAs. Thirty-eight out of 40 testable eQTL effects were colocalized with the disease association signal. As many eQTLs are tissue specific, we aimed to detail their significance in different cell types. Approximately 70% of the eQTLs were replicated and characterized in at least one major peripheral blood mononuclear cell-derived cell type. Furthermore, 40% of eQTLs were found to be more pronounced in MS patients compared with non-inflammatory neurological diseases patients. In addition, we found two single nucleotide polymorphisms to be significantly associated with the proportions of three different cell types. Mapping to enhancer histone marks and predicted transcription factor binding sites added additional functional evidence for eight eQTL regions. As an example, we found that rs71624119, shared with three other autoimmune diseases and located in a primed enhancer (H3K4me1) with potential binding for STAT transcription factors, significantly associates with ANKRD55 expression. This study provides many novel and validated targets for future functional characterization of MS and other diseases.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy