SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Branneby Cecilia) "

Sökning: WFRF:(Branneby Cecilia)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berglund, Per, et al. (författare)
  • 7.18 C-X Bond Formation : Transaminases as Chiral Catalysts: Mechanism, Engineering, and Applications
  • 2012
  • Ingår i: Comprehensive Chirality. - : Elsevier. - 9780080951683 ; , s. 390-401
  • Bokkapitel (refereegranskat)abstract
    • Enantiomerically pure amines and amino acids are important building blocks in academic research as well as in industrial-scale chemical production. Transaminases are versatile enzymes providing access to such compounds of high enantiomeric excess. This chapter illustrates the available strategies with transaminases such as kinetic resolution or stereoselective synthesis and highlights many successful examples for amino acid and chiral amines synthesis. There are some known challenges linked to the use of transaminases, for example in terms of unfavorable equilibria and inhibition. Several successful examples to overcome these limitations are presented. Also, the classification of transaminases, mechanistic details, and various strategies for optimization are discussed.
  •  
2.
  •  
3.
  •  
4.
  • Branneby, Cecilia, et al. (författare)
  • Aldol Additions with Mutant Lipase : Analysis by Experiments and Theoretical Calculations
  • 2004
  • Ingår i: Journal of Molecular Catalysis B. - : Elsevier BV. - 1381-1177 .- 1873-3158. ; 31:4-6, s. 123-128
  • Tidskriftsartikel (refereegranskat)abstract
    • A Ser105Ala mutant of Candida antarctica lipase B has previously been shown to catalyze aldol additions. Quantum chemical calculations predicted a reaction rate similar to that of natural enzymes, whereas experiments showed a much lower reaction rate. Molecular dynamics simulations, presented here, show that the low reaction rate is a consequence of the low frequencies of near attack complexes in the enzyme. Equilibrium was also considered as a reason for the slow product formation, but could be excluded by performing a sequential reaction to push the reaction towards product formation. In this paper, further experimental results are also presented, highlighting the importance of the entire active site for catalysis.
  •  
5.
  • Branneby, Cecilia, et al. (författare)
  • Carbon-Carbon Bonds by Hydrolytic Enzymes
  • 2003
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 125:4, s. 874-875
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymes are efficient catalysts in synthetic chemistry, and their catalytic activity with unnatural substrates in organic reaction media is an area attracting much attention. Protein engineering has opened the possibility to change the reaction specificity of enzymes and allow for new reactions to take place in their active sites. We have used this strategy on the well-studied active-site scaffold offered by the serine hydrolase Candida antarctica lipase B (CALB, EC 3.1.1.3) to achieve catalytic activity for aldol reactions. The catalytic reaction was studied in detail by means of quantum chemical calculations in model systems. The predictions from the quantum chemical calculations were then challenged by experiments. Consequently, Ser105 in CALB was targeted by site-directed mutagenesis to create enzyme variants lacking the nucleophilic feature of the active site. The experiments clearly showed an increased reaction rate when the aldol reaction was catalyzed by the mutant enzymes as compared to the wild-type lipase. We expect that the new catalytic activity, harbored in the stable protein scaffold of the lipase, will allow aldol additions of substrates, which cannot be reached by traditional aldolases
  •  
6.
  •  
7.
  • Branneby, Cecilia, 1974- (författare)
  • Exploiting enzyme promiscuity for rational design
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Enzymes are today well recognized in various industrial applications, being an important component in detergents, and catalysts in the production of agrochemicals, foods, pharmaceuticals, and fine chemicals. Their large use is mainly due to their high selectivity and environmental advantage, compared to traditional catalysts. Tools and techniques in molecular biology offer the possibility to screen the natural sources and engineer new enzyme activities which further increases their usefulness as catalysts, in a broader area. Although enzymes show high substrate and reaction selectivity many enzymes are today known to catalyze other reactions than their natural ones. This is called enzyme promiscuity. It has been suggested that enzyme promiscuity is Nature’s way to create diversity. Small changes in the protein sequence can give the enzyme new reaction specificity. In this thesis I will present how rational design, based on molecular modeling, can be used to explore enzyme promiscuity and to change the enzyme reaction specificity. The first part of this work describes how Candida antarctica lipase B (CALB), by a single point mutation, was mutated to give increased activity for aldol additions, Michael additions and epoxidations. The activities of these reactions were predicted by quantum chemical calculations, which suggested that a single-point mutant of CALB would catalyze these reactions. Hence, the active site of CALB, which consists of a catalytic triad (Ser, His, Asp) and an oxyanion hole, was targeted by site-directed mutagenesis and the nucleophilic serine was mutated for either glycine or alanine. Enzymes were expressed in Pichia pastoris and analyzed for activity of the different reactions. In the case of the aldol additions the best mutant showed a four-fold initial rate over the wild type enzyme, for hexanal. Also Michael additions and epoxidations were successfully catalyzed by this mutant. In the last part of this thesis, rational design of alanine racemase from Geobacillus stearothermophilus was performed in order to alter the enzyme specificity. Active protein was expressed in Escherichia coli and analyzed. The explored reaction was the conversion of alanine to pyruvate and 2-butanone to 2-butylamine. One of the mutants showed increased activity for transamination, compared to the wild type.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy