SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bretman Amanda) "

Sökning: WFRF:(Bretman Amanda)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bretman, Amanda, et al. (författare)
  • Systematic approaches to assessing high-temperature limits to fertility in animals
  • 2024
  • Ingår i: Journal of Evolutionary Biology. - 1010-061X .- 1420-9101.
  • Tidskriftsartikel (refereegranskat)abstract
    • Critical thermal limits (CTLs) gauge the physiological impact of temperature on survival or critical biological function, aiding predictions of species range shifts and climatic resilience. Two recent Drosophila species studies, using similar approaches to determine temperatures that induce sterility (thermal fertility limits [TFLs]), reveal that TFLs are often lower than CTLs and that TFLs better predict both current species distributions and extinction probability. Moreover, many studies show fertility is more sensitive at less extreme temperatures than survival (thermal sensitivity of fertility [TSF]). These results present a more pessimistic outlook on the consequences of climate change. However, unlike CTLs, TFL data are limited to Drosophila, and variability in TSF methods poses challenges in predicting species responses to increasing temperature. To address these data and methodological gaps, we propose 3 standardized approaches for assessing thermal impacts on fertility. We focus on adult obligate sexual terrestrial invertebrates but also provide modifications for other animal groups and life-history stages. We first outline a gold-standard protocol for determining TFLs, focussing on the effects of short-term heat shocks and simulating more frequent extreme heat events predicted by climate models. As this approach may be difficult to apply to some organisms, we then provide a standardized TSF protocol. Finally, we provide a framework to quantify fertility loss in response to extreme heat events in nature, given the limitations in laboratory approaches. Applying these standardized approaches across many taxa, similar to CTLs, will allow robust tests of the impact of fertility loss on species responses to increasing temperatures. Graphical AbstractOverview of the systematic methods (A, C, and D) to simultaneously assay lethal limits and thermal fertility limits or (B and E) thermal sensitivity of fertility. These are most easily applied to laboratory settings but can be used for assessing the fertility of wild-caught animals that have been exposed to natural temperatures.
  •  
2.
  • Dougherty, Liam R., et al. (författare)
  • A systematic map of studies testing the relationship between temperature and animal reproduction
  • 2024
  • Ingår i: Ecological Solutions and Evidence. - : John Wiley & Sons. - 2688-8319. ; 5:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to extreme temperatures can negatively affect animal reproduction, by disrupting the ability of individuals to produce any offspring (fertility), or the number of offspring produced by fertile individuals (fecundity). This has important ecological consequences, because reproduction is the ultimate measure of population fitness: a reduction in reproductive output lowers the population growth rate and increases the extinction risk. Despite this importance, there have been no large-scale summaries of the evidence for effect of temperature on reproduction.We provide a systematic map of studies testing the relationship between temperature and animal reproduction. We systematically searched for published studies that statistically test for a direct link between temperature and animal reproduction, in terms of fertility, fecundity or indirect measures of reproductive potential (gamete and gonad traits).Overall, we collated a large and rich evidence base, with 1654 papers that met our inclusion criteria, encompassing 1191 species.The map revealed several important research gaps. Insects made up almost half of the dataset, but reptiles and amphibians were uncommon, as were non-arthropod invertebrates. Fecundity was the most common reproductive trait examined, and relatively few studies measured fertility. It was uncommon for experimental studies to test exposure of different life stages, exposure to short-term heat or cold shock, exposure to temperature fluctuations, or to independently assess male and female effects. Studies were most often published in journals focusing on entomology and pest control, ecology and evolution, aquaculture and fisheries science, and marine biology. Finally, while individuals were sampled from every continent, there was a strong sampling bias towards mid-latitudes in the Northern Hemisphere, such that the tropics and polar regions are less well sampled.This map reveals a rich literature of studies testing the relationship between temperature and animal reproduction, but also uncovers substantial missing treatment of taxa, traits, and thermal regimes. This database will provide a valuable resource for future quantitative meta-analyses, and direct future studies aiming to fill identified gaps.
  •  
3.
  • Parratt, Steven R., et al. (författare)
  • Temperatures that sterilize males better match global species distributions than lethal temperatures
  • 2021
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 11:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Attempts to link physiological thermal tolerance to global species distributions have relied on lethal temperature limits, yet many organisms lose fertility at sublethal temperatures. Here we show that, across 43 Drosophila species, global distributions better match male-sterilizing temperatures than lethal temperatures. This suggests that species distributions may be determined by thermal limits to reproduction, not survival, meaning we may be underestimating the impacts of climate change for many organisms.
  •  
4.
  • Walsh, Benjamin S., et al. (författare)
  • Female fruit flies cannot protect stored sperm from high temperature damage
  • 2022
  • Ingår i: Journal of Thermal Biology. - : Elsevier BV. - 0306-4565 .- 1879-0992. ; 105
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, it has been demonstrated that heat-induced male sterility is likely to shape population persistence as climate change progresses. However, an under-explored possibility is that females may be able to successfully store and preserve sperm at temperatures that sterilise males, which could ameliorate the impact of male infertility on populations. Here, we test whether females from two fruit fly species can protect stored sperm from a high temperature stress. We find that sperm carried by female Drosophila virilis are almost completely sterilised by high temperatures, whereas sperm carried by female Zaprionus indianus show only slightly reduced fertility. Heat-shocked D. virilis females can recover fertility when allowed to remate, suggesting that the delivered heat-shock is damaging stored sperm and not directly damaging females in this species. The temperatures required to reduce fertility of mated females are substantially lower than the temperatures required to damage mature sperm in males, suggesting that females are worse than males at protecting mature sperm. This suggests that female sperm storage is unlikely to ameliorate the impacts of high temperature fertility losses in males, and instead exacerbates fertility costs of high temperatures, representing an important determinant of population persistence during climate change.
  •  
5.
  • Walsh, Benjamin S., et al. (författare)
  • Plastic responses of survival and fertility following heat stress in pupal and adult Drosophila virilis
  • 2021
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 11:24, s. 18238-18247
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life history stage impacts fertility. We then tested the capacity for heat-hardening to mitigate heat-induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but become sterile within seven days. We also found evidence that while heat-hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat-hardening, which limits a species' ability to quickly and effectively reduce fertility loss in the face of short-term high temperature events.
  •  
6.
  • Walsh, Benjamin S., et al. (författare)
  • The Impact of Climate Change on Fertility
  • 2019
  • Ingår i: Trends in Ecology & Evolution. - : Elsevier BV. - 0169-5347 .- 1872-8383. ; 34:3, s. 249-259
  • Forskningsöversikt (refereegranskat)abstract
    • Rising global temperatures are threatening biodiversity. Studies on the impact of temperature on natural populations usually use lethal or viability thresholds, termed the 'critical thermal limit' (CTL). However, this overlooks important sublethal impacts of temperature that could affect species' persistence. Here we discuss a critical but overlooked trait: fertility, which can deteriorate at temperatures less severe than an organism's lethal limit. We argue that studies examining the ecological and evolutionary impacts of climate change should consider the 'thermal fertility limit' (TFL) of species; we propose that a framework for the design of TFL studies across taxa be developed. Given the importance of fertility for population persistence, understanding how climate change affects TFLs is vital for the assessment of future biodiversity impacts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy