SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brill Joseph W.) "

Sökning: WFRF:(Brill Joseph W.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Malti, Abdellah, et al. (författare)
  • An Organic Mixed Ion-Electron Conductor for Power Electronics
  • 2016
  • Ingår i: Advanced Science. - : Wiley-Blackwell. - 2198-3844. ; 3:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A mixed ionic–electronic conductor based on nanofibrillated cellulose composited with poly(3,4-ethylene-dioxythio­phene):­poly(styrene-sulfonate) along with high boiling point solvents is demonstrated in bulky electrochemical devices. The high electronic and ionic conductivities of the resulting nanopaper are exploited in devices which exhibit record values for the charge storage capacitance (1F) in supercapacitors and transconductance (1S) in electrochemical transistors.
  •  
3.
  • Malti, Abdellah, et al. (författare)
  • Enabling organic power electronics with a cellulose nano-scaffold
  • 2015
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Exploiting the nanoscale properties of certain materials enables the creation of new materials with a unique set of properties. Here, we report on an electronic (and ionic) conducting paper based on cellulose nanofibrils (CNF) composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS), which may be facilely processed into large three-dimensional geometries, while keeping unprecedented electronic and ionic conductivities of 140 S/cm and 20 mS/cm, respectively. This is achieved by cladding the CNF with PEDOT:PSS, and trapping an ion-transporting phase in the interstices between these nanofibrils. The unique properties of the resulting nanopaper composite have been used to demonstrate (electrochemical) transistors, supercapacitors and conductors resulting in exceptionally high device parameters, such as an associated transconductance, charge storage capacity and current level beyond 1 S, 1 F and 1 A, respectively.
  •  
4.
  • Håkansson, Anna, et al. (författare)
  • Conducting-Polymer Bolometers for Low-Cost IR-Detection Systems
  • 2019
  • Ingår i: Advanced Electronic Materials. - : Wiley-VCH Verlagsgesellschaft. - 2199-160X. ; 5:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconducting polymers are promising materials for manufacturing optoelectronic devices, such as large-area solar cells or small light-emitting diodes, through the use of printing technologies. In their oxidized form, pi-conjugated polymers become good electrical conductors and their optical absorption shifts to the infrared region. It is demonstrated that conducting polymers can be integrated in bolometers for IR detection. A bolometer is a thermally isolated thin device that absorbs IR radiation and translates a temperature change into a change in electrical resistance. While commercial bolometers are usually made of complex architectures comprising several materials (that is, an IR absorbing layer, a conducting layer, and a thermally insulating layer), the first polymer bolometer is demonstrated with a freestanding layer of poly(3,4-ethylene-dioxythiophene) having high IR absorption, low thermal conductivity, and good thermistor action in one single layer. The solution processability of conducting polymers, their compatibility with high-resolution printing technologies, and their unique combination of optoelectronic properties can lead to a breakthrough for low-cost uncooled IR cameras, which are in high demand for security and safety applications.
  •  
5.
  • Li, Zaifang, et al. (författare)
  • A Free-Standing High-Output Power Density Thermoelectric Device Based on Structure-Ordered PEDOT:PSS
  • 2018
  • Ingår i: Advanced Electronic Materials. - : Wiley-VCH Verlagsgesellschaft. - 2199-160X. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A free-standing high-output power density polymeric thermoelectric (TE) device is realized based on a highly conductive (approximate to 2500 S cm(-1)) structure-ordered poly(3,4-ethylenedioxythiophene):polystyrene sulfonate film (denoted as FS-PEDOT:PSS) with a Seebeck coefficient of 20.6 mu V K-1, an in-plane thermal conductivity of 0.64 W m(-1) K-1, and a peak power factor of 107 mu W K-2 m(-1) at room temperature. Under a small temperature gradient of 29 K, the TE device demonstrates a maximum output power density of 99 +/- 18.7 mu W cm(-2), which is the highest value achieved in pristine PEDOT:PSS based TE devices. In addition, a fivefold output power is demonstrated by series connecting five devices into a flexible thermoelectric module. The simplicity of assembling the films into flexible thermoelectric modules, the low out-of-plane thermal conductivity of 0.27 W m(-1) K-1, and free-standing feature indicates the potential to integrate the FS-PEDOT:PSS TE modules with textiles to power wearable electronics by harvesting human bodys heat. In addition to the high power factor, the high thermal stability of the FS-PEDOT:PSS films up to 250 degrees C is confirmed by in situ temperature-dependent X-ray diffraction and grazing incident wide angle X-ray scattering, which makes the FS-PEDOT:PSS films promising candidates for thermoelectric applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy