SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brinckmann Thejs) "

Search: WFRF:(Brinckmann Thejs)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abazajian, Kevork, et al. (author)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Journal article (peer-reviewed)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
2.
  • Gariazzo, Stefano, et al. (author)
  • Neutrino mass and mass ordering : no conclusive evidence for normal ordering
  • 2022
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; 2022:10
  • Journal article (peer-reviewed)abstract
    • The extraction of the neutrino mass ordering is one of the major challenges in particle physics and cosmology, not only for its implications for a fundamental theory of mass generation in nature, but also for its decisive role in the scale of future neutrinoless double beta decay experimental searches. It has been recently claimed that current oscillation, beta decay and cosmological limits on the different observables describing the neutrino mass parameter space provide robust decisive Bayesian evidence in favor of the normal ordering of the neutrino mass spectrum [1]. We further investigate these strong claims using a rich and wide phenomenology, with different sampling techniques of the neutrino parameter space. Contrary to the findings of Jimenez et al. [1], no decisive evidence for the normal mass ordering is found. Neutrino mass ordering analyses must rely on priors and parameterizations that are ordering-agnostic: robust results should be regarded as those in which the preference for the normal neutrino mass ordering is driven exclusively by the data, while we find a difference of up to a factor of 33 in the Bayes factors among the different priors and parameterizations exploited here. An ordering-agnostic prior would be represented by the case of parameterizations sampling over the two mass splittings and a mass scale, or those sampling over the individual neutrino masses via normal prior distributions only. In this regard, we show that the current significance in favor of the normal mass ordering should be taken as 2.7σ (i.e. moderate evidence), mostly driven by neutrino oscillation data. Let us stress that, while current data favor NO only mildly, we do not exclude the possibility that this may change in the future. Eventually, upcoming oscillation and cosmological data may (or may not) lead to a more significant exclusion of IO.
  •  
3.
  • Vagnozzi, Sunny, et al. (author)
  • Bias due to neutrinos must not uncorrect'd go
  • 2018
  • In: Journal of Cosmology and Astroparticle Physics. - : IOP Publishing. - 1475-7516. ; :9
  • Journal article (peer-reviewed)abstract
    • It is a well known fact that galaxies are biased tracers of the distribution of matter in the Universe. The galaxy bias is usually factored as a function of redshift and scale, and approximated as being scale-independent on large, linear scales. In cosmologies with massive neutrinos, the galaxy bias defined with respect to the total matter field (cold dark matter, baryons, and non-relativistic neutrinos) also depends on the sum of the neutrino masses M-nu, and becomes scale-dependent even on large scales. This effect has been usually neglected given the sensitivity of current surveys. However, it becomes a severe systematic for future surveys aiming to provide the first detection of non-zero M-nu. The effect can be corrected for by defining the bias with respect to the density field of cold dark matter and baryons, rather than the total matter field. In this work, we provide a simple prescription for correctly mitigating the neutrino-induced scale-dependent bias effect in a practical way. We clarify a number of subtleties regarding how to properly implement this correction in the presence of redshift-space distortions and non-linear evolution of perturbations. We perform a Markov Chain Monte Carlo analysis on simulated galaxy clustering data that match the expected sensitivity of the Euclid survey. We find that the neutrino-induced scale-dependent bias can lead to important shifts in both the inferred mean value of M-nu, as well as its uncertainty, and provide an analytical explanation for the magnitude of the shifts. We show how these shifts propagate to the inferred values of other cosmological parameters correlated with M-nu, such as the cold dark matter physical density Omega(cdm)h(2) and the scalar spectral index n(s). In conclusion, we find that correctly accounting for the neutrino-induced scale-dependent bias will be of crucial importance for future galaxy clustering analyses. We encourage the cosmology community to correctly account for this effect using the simple prescription we present in our work. The tools necessary to easily correct for the neutrino-induced scale-dependent bias will be made publicly available in an upcoming release of the Boltzmann solver CLASS.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view