SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brink Elfegoun T.) "

Sökning: WFRF:(Brink Elfegoun T.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brink-Elfegoun, Tibault, et al. (författare)
  • Maximal oxygen uptake is not limited by a central nervous system governor.
  • 2007
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 102:2, s. 781-6
  • Tidskriftsartikel (refereegranskat)abstract
    • We tested the hypothesis that the work of the heart was not a limiting factor in the attainment of maximal oxygen uptake (VO2 max). We measured cardiac output (Q) and blood pressures (BP) during exercise at two different rates of maximal work to estimate the work of the heart through calculation of the rate-pressure product, as a part of the ongoing discussion regarding factors limiting VO2 max. Eight well-trained men (age 24.4 +/- 2.8 yr, weight 81.3 +/- 7.8 kg, and VO2 max 59.1 +/- 2.0 ml x min(-1) x kg(-1)) performed two maximal combined arm and leg exercises, differing 10% in watts, with average duration of time to exhaustion of 4 min 50 s and 3 min 40 s, respectively. There were no differences between work rates in measured VO2 max, maximal Q, and peak heart rate between work rates (0.02 l/min, 0.3 l/min, and 0.8 beats/min, respectively), but the systolic, diastolic, and calculated mean BP were significantly higher (19, 5, and 10 mmHg, respectively) in the higher than in the lower maximal work rate. The products of heart rate times systolic or mean BP and Q times systolic or mean BP were significantly higher (3,715, 1,780, 569, and 1,780, respectively) during the higher than the lower work rate. Differences in these four products indicate a higher mechanical work of the heart on higher than lower maximal work rate. Therefore, this study does not support the theory, which states that the work of the heart, and consequently VO2 max, during maximal exercise is hindered by a command from the central nervous system aiming at protecting the heart from being ischemic.
  •  
2.
  • Brink-Elfegoun, T., et al. (författare)
  • Neuromuscular and circulatory adaptation during combined arm and leg exercise with different maximal work loads
  • 2007
  • Ingår i: European Journal of Applied Physiology. - : Springer Science and Business Media LLC. - 1439-6319 .- 1439-6327. ; 101:5, s. 603-611
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiopulmonary kinetics and electromyographic activity (EMG) during exhausting exercise were measured in 8 males performing three maximal combined arm + leg exercises (cA+L). These exercises were performed at different rates of work (mean ± SD; 373 ± 48, 429 ± 55 and 521 ± 102 W) leading to different average exercise work times in all tests and subjects. reached a plateau versus work rate in every maximal cA+L exercise (range 6 min 33 s to 3 min 13 s). The three different exercise protocols gave a maximal oxygen consumption of 4.67 ± 0.57, 4.58 ± 0.52 and 4.66 ± 0.53 l min−1 (P = 0.081), and a maximal heart rate (HRmax) of 190 ± 6, 189 ± 4 and 189 ± 6 beats min−1 (P = 0.673), respectively. Root mean square EMG (EMGRMS) of the vastus lateralis and the triceps brachii muscles increased with increasing rate of work and time in all three cA+L protocols. The study demonstrates that despite different maximal rates of work, leading to different times to exhaustion, the circulatory adaptation to maximal exercise was almost identical in all three protocols that led to a plateau. The EMGRMS data showed increased muscle recruitment with increasing work rate, even though the HRmax and was the same in all three cA+L protocols. In conclusion, these findings do not support the theory of the existence of a central governor (CG) that regulates circulation and neuronal output of skeletal muscles during maximal exercise. Thibault Brink-Elfegoun and Hans-Christer Holmberg contributed equally to this article.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy