SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brito Joel) "

Sökning: WFRF:(Brito Joel)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cirino, Glauber, et al. (författare)
  • Observations of Manaus urban plume evolution and interaction with biogenic emissions in GoAmazon 2014/5
  • 2018
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 191, s. 513-524
  • Tidskriftsartikel (refereegranskat)abstract
    • As part of the Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/5) Experiment, detailed aerosol and trace gas measurements were conducted near Manaus, a metropolis located in the central Amazon Basin. Measurements of aerosol particles and trace gases were done downwind Manaus at the sites T2 (Tiwa Hotel) and T3 (Manacapuru), at a distance of 8 and 70 km from Manaus, respectively. Based on in-plume measurements closer to Manaus (site T2), the chemical signatures of city emissions were used to improve the interpretation of pollutant levels at the T3 site. We derived chemical and physical properties for the city's atmospheric emission ensemble, taking into account only air masses impacted by the Manaus plume at both sites, during the wet and dry season Intensive Operating Periods (IOPs). At T2, average concentrations of aerosol number (CN), CO and SO2 were 5500 cm(-3) (between 10 and 490 nm), 145 ppb and 0.60 ppb, respectively, with a typical ratio ACN/ACO of 60-130 particles cm(-3) ppb(-1). The aerosol scattering (at RH < 60%) and absorption at 637 nm at T2 ranged from 10 to 50 M m(-1) and 5-10 M m(-1), respectively, leading to a mean single scattering albedo (SSA) of 0.70. In addition to identifying periods dominated by Manaus emissions at both T2 and T3, the plume transport between the two sampling sites was studied using back trajectory calculations. Results show that the presence of the Manaus plume at site T3 was important mainly during the daytime and at the end of the afternoons. During time periods directly impacted by Manaus emissions, an average aerosol number concentration of 3200 cm(-3) was measured at T3. Analysis of plume evolution between T2 and T3 indicates a transport time of 4-5 h. Changes of submicron organic and sulfate aerosols ratios relative to CO (Delta OA/Delta CO and Delta SO4/Delta CO, respectively) indicate significant production of secondary organic aerosol (SOA), corresponding to a 40% mass increase in OA and a 30% in SO4 mass concentration. Similarly, during air mass arrival at T3 the SSA increased to 0.83 from 0.70 at T2, mainly associated with an increase in organic aerosol concentration. Aerosol particle size distributions show a strong decrease in the Aitken nuclei mode (10-100 nm) during the transport from T2 to T3, in particular above 30 nm, as a result of efficient coagulation processes into larger particles. A decrease of 30% in the particle number concentration and an increase of about 50 nm in geometric mean diameter were observed from T2 to T3 sites. The study of the evolution of aerosol properties downwind of the city of Manaus improves our understanding of how coupling of anthropogenic and biogenic sources may be impacting the sensitive Amazonian atmosphere.
  •  
2.
  • Haslett, Sophie L., et al. (författare)
  • The radiative impact of out-of-cloud aerosol hygroscopic growth during the summer monsoon in southern West Africa
  • 2019
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 1505-1520
  • Tidskriftsartikel (refereegranskat)abstract
    • Water in the atmosphere can exist in the solid, liquid or gas phase. At high humidities, if the aerosol population remains constant, more water vapour will condense onto the particles and cause them to swell, sometimes up to several times their original size. This significant change in size and chemical composition is termed hygroscopic growth and alters a particle's optical properties. Even in unsaturated conditions, this can change the aerosol direct effect, for example by increasing the extinction of incoming sunlight. This can have an impact on a region's energy balance and affect visibility. Here, aerosol and relative humidity measurements collected from aircraft and radiosondes during the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) campaign were used to estimate the effect of highly humid layers of air on aerosol optical properties during the monsoon season in southern West Africa. The effects of hygroscopic growth in this region are of particular interest due to the regular occurrence of high humidity and the high levels of pollution in the region. The Zdanovskii, Stokes and Robinson (ZSR) mixing rule is used to estimate the hygroscopic growth of particles under different conditions based on chemical composition. These results are used to estimate the aerosol optical depth (AOD) at lambda = 525 nm for 63 relative humidity profiles. The median AOD in the region from these calculations was 0.36, the same as that measured by sun photometers at the ground site. The spread in the calculated AODs was less than the spread from the sun photometer measurements. In both cases, values above 0.5 were seen predominantly in the mornings and corresponded with high humidities. Observations of modest variations in aerosol load and composition are unable to explain the high and variable AODs observed using sun photometers, which can only be recreated by accounting for the very elevated and variable relative humidities (RHs) in the boundary layer. Most importantly, the highest AODs present in the mornings are not possible without the presence of high RH in excess of 95 %. Humid layers are found to have the most significant impact on AOD when they reach RH greater than 98 %, which can result in a wet AOD more than 1.8 times the dry AOD. Unsaturated humid layers were found to reach these high levels of RH in 37% of observed cases. It can therefore be concluded that the high AODs present across the region are driven by the high humidities and are then moderated by changes in aerosol abundance. Aerosol concentrations in southern West Africa are projected to increase substantially in the coming years; results presented here show that the presence of highly humid layers in the region is likely to enhance the consequent effect on AOD significantly.
  •  
3.
  •  
4.
  • Rizzo, Luciana Varanda, et al. (författare)
  • Multi-year statistical and modeling analysis of submicrometer aerosol number size distributions at a rain forest site in Amazonia
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:14, s. 10255-10274
  • Tidskriftsartikel (refereegranskat)abstract
    • The Amazon Basin is a unique region to study atmospheric aerosols, given their relevance for the regional hydrological cycle and the large uncertainty of their sources. Multi-year datasets are crucial when contrasting periods of natural conditions and periods influenced by anthropogenic emissions. In the wet season, biogenic sources and processes prevail, and the Amazonian atmospheric composition resembles preindustrial conditions. In the dry season, the basin is influenced by widespread biomass burning emissions. This work reports multi-year observations of high time resolution submicrometer (10-600 nm) particle number size distributions at a rain forest site in Amazonia (TT34 tower, 60 km NW from Manaus city), between 2008 and 2010 and 2012 and 2014. The median particle number concentration was 403 cm(-3) in the wet season and 1254 cm(-3) in the dry season. The Aitken mode (similar to 30-100 nm in diameter) was prominent during the wet season, while the accumulation mode (similar to 100-600 nm in diameter) dominated the particle size spectra during the dry season. Cluster analysis identified groups of aerosol number size distributions influenced by convective downdrafts, nucleation events and fresh biomass burning emissions. New particle formation and subsequent growth was rarely observed during the 749 days of observations, similar to previous observations in the Amazon Basin. A stationary 1-D column model (ADCHEM Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer model) was used to assess the importance of the processes behind the observed diurnal particle size distribution trends. Three major particle source types are required in the model to reproduce the observations: (i) a surface source of particles in the evening, possibly related to primary biological emissions; (ii) entrainment of accumulation mode aerosols in the morning; and (iii) convective downdrafts transporting Aitken mode particles into the boundary layer mostly during the afternoon. The latter process has the largest influence on the modeled particle number size distributions. However, convective downdrafts are often associated with rain and, thus, act as both a source of Aitken mode particles and a sink of accumulation mode particles, causing a net reduction in the median total particle number concentrations in the surface layer. Our study shows that the combination of the three mentioned particle sources is essential to sustain particle number concentrations in Amazonia.
  •  
5.
  • Schmale, Julia, et al. (författare)
  • Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories
  • 2018
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:4, s. 2853-2881
  • Tidskriftsartikel (refereegranskat)abstract
    • Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles 20nm) across the range of 0.1 to 1.0% supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on -Köhler theory to predict CCN number concentrations. The ratio of predicted to measured CCN concentrations is between 0.87 and 1.4 for five different types of . The temporal variability is also well captured, with Pearson correlation coefficients exceeding 0.87. Information on CCN number concentrations at many locations is important to better characterise ACI and their radiative forcing. But long-term comprehensive aerosol particle characterisations are labour intensive and costly. Hence, we recommend operating migrating-CCNCs to conduct collocated CCN number concentration and particle number size distribution measurements at individual locations throughout one year at least to derive a seasonally resolved hygroscopicity parameter. This way, CCN number concentrations can only be calculated based on continued particle number size distribution information and greater spatial coverage of long-term measurements can be achieved.
  •  
6.
  • Wang, Jian, et al. (författare)
  • Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 539:7629, s. 416-419
  • Tidskriftsartikel (refereegranskat)abstract
    • The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere(1). Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions(3-5), but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear(6-8). Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.
  •  
7.
  • Wimmer, Daniela, et al. (författare)
  • Ground-based observation of clusters and nucleation-mode particles in the Amazon
  • 2018
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:17, s. 13245-13264
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated atmospheric new particle formation (NPF) in the Amazon rainforest using direct measurement methods. To our knowledge this is the first direct observation of NPF events in the Amazon region. However, previous observations elsewhere in Brazil showed the occurrence of nucleation-mode particles. Our measurements covered two field sites and both the wet and dry season. We measured the variability of air ion concentrations (0.8-12 nm) with an ion spectrometer between September 2011 and January 2014 at a rainforest site (T0t). Between February and October 2014, the same measurements were performed at a grassland pasture site (T3) as part of the GoAmazon 2014/5 experiment, with two intensive operating periods (IOP1 and IOP2 during the wet and the dry season, respectively). The GoAmazon 2014/5 experiment was designed to study the influence of anthropogenic emissions on the changing climate in the Amazon region. The experiment included basic aerosol and trace gas measurements at the ground, remote sensing instrumentation, and two aircraft-based measurements. The results presented in this work are from measurements performed at ground level at both sites. The site inside the rainforest (T0t) is located 60 km NNW of Manaus and influenced by pollution about once per week. The pasture (T3) site is located 70 km downwind from Manaus and influenced by the Manaus pollution plume typically once per day or every second day, especially in the afternoon. No NPF events were observed inside the rainforest (site T0t) at ground level during the measurement period. However, rain-induced ion and particle bursts (hereafter, rain events) occurred frequently (643 of 1031 days) at both sites during the wet and dry season, being most frequent during the wet season. During the rain events, the ion concentrations in three size ranges (0.8-2, 2-4, and 4-12 nm) increased up to about 10(4)-10(5) cm(-3). This effect was most pronounced in the intermediate and large size ranges, for which the background ion concentrations were about 10-15 cm(-3) compared with 700 cm(-3) for the cluster ion background. We observed eight NPF events at the pasture site during the wet season. We calculated the growth rates and formation rates of neutral particles and ions for the size ranges 2-3 and 3-7 nm using the ion spectrometer data. The observed median growth rates were 0.8 and 1.6 nm h(-1) for 2-3 nm sized ions and particles, respectively, with larger growth rates (13.3 and 7.9 nm h(-1)) in the 3-7 nm size range. The measured nucleation rates were of the order of 0.2 cm(-3) s(-1) for particles and 4-9 x 10(-3) cm(-3) s(-1) for ions. There was no clear difference in the sulfuric acid concentrations between the NPF event days and nonevent days (similar to 9 x 10(5) cm(-3)). The two major differences between the NPF days and nonevent days were a factor of 1.8 lower condensation sink on NPF event days (1.8 x 10(-3) s(-1)) compared to nonevents (3.2 x 10(-3) s(-1)) and different air mass origins. To our knowledge, this is the first time that results from ground-based sub-3 nm aerosol particle measurements have been obtained from the Amazon rainforest.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy