SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brito Rodrigo O.) "

Sökning: WFRF:(Brito Rodrigo O.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Antunes, Filipe, et al. (författare)
  • Mechanisms behind the faceting of catanionic vesicles by polycations: Chain crystallization and segregation
  • 2007
  • Ingår i: The Journal of Physical Chemistry Part B. - 1520-5207. ; 111:1, s. 116-123
  • Tidskriftsartikel (refereegranskat)abstract
    • Vesicles composed of an anionic and a cationic surfactant, with a net negative charge, associate strongly with a hydrophobically modified polycation (LM200) and with an unmodified polycation with higher charge density (JR400), forming viscoelastic gel-like structures. Calorimetric results show that in these gels, LM200 induces a rise of the chain melting temperature (T-m) of the vesicles, whereas JR400 has the opposite effect. For both polymer-vesicle systems, the shear viscosity exhibits an inflection point at T-m, and for the LM200 system the measured relaxation times are significantly higher below T-m. The neat vesicles and the polycation-bound vesicles have a polygonal-like faceted shape when the surfactant chains in the bilayer are crystallized, as probed by cryo-transmission electron microscopy. Above T-m, the neat and the LM200-bound vesicles regain a spheroidal shape, whereas those in the JR400 system remain with a deformed faceted shape even above T-m. These shape changes are interpreted in terms of different mechanisms for the polymer-vesicle interaction, which seem to be highly dependent on polymer architecture, namely charge density and hydrophobic modification. A crystallization-segregation mechanism is proposed for the LM200-vesicle system, while, for the JR400-vesicle one, charge polarization-lateral segregation effects induced by the polycation in the catanionic bilayer are envisaged.
  •  
4.
  • Brito, Rodrigo O., et al. (författare)
  • Self-assembly in a catanionic mixture with an aminoacid-derived surfactant: From mixed micelles to spontaneous vesicles
  • 2006
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 110:37, s. 18158-18165
  • Tidskriftsartikel (refereegranskat)abstract
    • The aqueous self-assembly of a novel lysine-derived surfactant with a gemini-like architecture, designated here as 12-Lys-12, has been experimentally investigated for the amphiphile alone in water and in a mixture with dodecyltrimethylammonium bromide (DTAB). The neat surfactant forms interesting micrometer-sized rigid tubules in the dilute region, resulting in very viscous solutions. For the catanionic mixture with DTAB, various single and multiphase regions were identified (up to a total surfactant concentration of 1.5 wt %) by means of combined polarizing light microscopy, cryo-TEM, and NMR. In the DTAB-rich side, for a mixing molar ratio in the range 2 < DTAB/12-Lys-12 < 4, a region of stable, unilamellar vesicles can be found. Furthermore, it was found that upon addition of 12-Lys-12 to pure DTAB solutions, the mixed micelles grow and beyond a given mixing ratio, vesicles assemble and coexist with small micelles. The transition is not continuous, since there is a narrow mixing range where phase separation occurs. Self-diffusion measurements and cryo-TEM imaging show that the average vesicle radius is on the order of 30-40 nm.
  •  
5.
  • Wang, Jian, et al. (författare)
  • Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall
  • 2016
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 539:7629, s. 416-419
  • Tidskriftsartikel (refereegranskat)abstract
    • The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere(1). Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions(3-5), but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear(6-8). Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy