SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Britton Steven L.) "

Sökning: WFRF:(Britton Steven L.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Komatsu, Kimberly J., et al. (författare)
  • Global change effects on plant communities are magnified by time and the number of global change factors imposed
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 116:36, s. 17867-17873
  • Tidskriftsartikel (refereegranskat)abstract
    • Accurate prediction of community responses to global change drivers (GCDs) is critical given the effects of biodiversity on ecosystem services. There is consensus that human activities are driving species extinctions at the global scale, but debate remains over whether GCDs are systematically altering local communities worldwide. Across 105 experiments that included over 400 experimental manipulations, we found evidence for a lagged response of herbaceous plant communities to GCDs caused by shifts in the identities and relative abundances of species, often without a corresponding difference in species richness. These results provide evidence that community responses are pervasive across a wide variety of GCDs on long-term temporal scales and that these responses increase in strength when multiple GCDs are simultaneously imposed.Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.
  •  
2.
  • Timmons, James A., et al. (författare)
  • Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans
  • 2010
  • Ingår i: Journal of applied physiology. - : American Physiological Society. - 8750-7587 .- 1522-1601. ; 108:6, s. 1487-1496
  • Tidskriftsartikel (refereegranskat)abstract
    • Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E, Greenhaff PL, Tarnopolsky MA, van Loon LJ, Pedersen BK, Sundberg CJ, Wahlestedt C, Britton SL, Bouchard C. Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108: 1487-1496, 2010. First published February 4, 2010; doi:10.1152/japplphysiol.01295.2009.-A low maximal oxygen consumption ((V) over dotO(2max)) is a strong risk factor for premature mortality. Supervised endurance exercise training increases (V) over dotO(2max) with a very wide range of effectiveness in humans. Discovering the DNA variants that contribute to this heterogeneity typically requires substantial sample sizes. In the present study, we first use RNA expression profiling to produce a molecular classifier that predicts (V) over dotO(2max) training response. We then hypothesized that the classifier genes would harbor DNA variants that contributed to the heterogeneous (V) over dotO(2max) response. Two independent preintervention RNA expression data sets were generated (n = 41 gene chips) from subjects that underwent supervised endurance training: one identified and the second blindly validated an RNA expression signature that predicted change in (V) over dotO(2max) (""predictor"" genes). The HERITAGE Family Study (n = 473) was used for genotyping. We discovered a 29-RNA signature that predicted (V) over dotO(2max) training response on a continuous scale; these genes contained similar to 6 new single-nucleotide polymorphisms associated with gains in (V) over dotO(2max) in the HERITAGE Family Study. Three of four novel candidate genes from the HERITAGE Family Study were confirmed as RNA predictor genes (i.e., ""reciprocal"" RNA validation of a quantitative trait locus genotype), enhancing the performance of the 29-RNA-based predictor. Notably, RNA abundance for the predictor genes was unchanged by exercise training, supporting the idea that expression was preset by genetic variation. Regression analysis yielded a model where 11 single-nucleotide polymorphisms explained 23% of the variance in gains in (V) over dotO(2max), corresponding to similar to 50% of the estimated genetic variance for (V) over dotO(2max). In conclusion, combining RNA profiling with single-gene DNA marker association analysis yields a strongly validated molecular predictor with meaningful explanatory power. (V) over dotO(2max) responses to endurance training can be predicted by measuring a similar to 30-gene RNA expression signature in muscle prior to training. The general approach taken could accelerate the discovery of genetic biomarkers, sufficiently discrete for diagnostic purposes, for a range of physiological and pharmacological phenotypes in humans.
  •  
3.
  • Britton, Tom, et al. (författare)
  • Five challenges for stochastic epidemic models involving global transmission
  • 2015
  • Ingår i: Epidemics. - : Elsevier BV. - 1755-4365 .- 1878-0067. ; 10, s. 54-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The most basic stochastic epidemic models are those involving global transmission, meaning that infection rates depend only on the type and state of the individuals involved, and not on their location in the population. Simple as they are, there are still several open problems for such models. For example, when will such an epidemic go extinct and with what probability (questions depending on the population being fixed, changing or growing)? How can a model be defined explaining the sometimes observed scenario of frequent mid-sized epidemic outbreaks? How can evolution of the infectious agent transmission rates be modelled and fitted to data in a robust way?
  •  
4.
  • Matthews, Charles E., et al. (författare)
  • Amount and Intensity of Leisure-Time Physical Activity and Lower Cancer Risk
  • 2020
  • Ingår i: Journal of Clinical Oncology. - : AMER SOC CLINICAL ONCOLOGY. - 0732-183X .- 1527-7755. ; 38:7, s. 686-697
  • Tidskriftsartikel (refereegranskat)abstract
    • PURPOSE: To determine whether recommended amounts of leisure-time physical activity (ie, 7.5-15 metabolic equivalent task [MET] hours/week) are associated with lower cancer risk, describe the shape of the dose-response relationship, and explore associations with moderate- and vigorous-intensity physical activity.METHODS: Data from 9 prospective cohorts with self-reported leisure-time physical activity and follow-up for cancer incidence were pooled. Multivariable Cox regression was used to estimate adjusted hazard ratios (HRs) and 95% CIs of the relationships between physical activity with incidence of 15 types of cancer. Dose-response relationships were modeled with restricted cubic spline functions that compared 7.5, 15.0, 22.5, and 30.0 MET hours/week to no leisure-time physical activity, and statistically significant associations were determined using tests for trend (P < .05) and 95% CIs (< 1.0).RESULTS: A total of 755,459 participants (median age, 62 years [range, 32-91 years]; 53% female) were followed for 10.1 years, and 50,620 incident cancers accrued. Engagement in recommended amounts of activity (7.5-15 MET hours/week) was associated with a statistically significant lower risk of 7 of the 15 cancer types studied, including colon (8%-14% lower risk in men), breast (6%-10% lower risk), endometrial (10%-18% lower risk), kidney (11%-17% lower risk), myeloma (14%-19% lower risk), liver (18%-27% lower risk), and non-Hodgkin lymphoma (11%-18% lower risk in women). The dose response was linear in shape for half of the associations and nonlinear for the others. Results for moderate- and vigorous-intensity leisure-time physical activity were mixed. Adjustment for body mass index eliminated the association with endometrial cancer but had limited effect on other cancer types.CONCLUSION: Health care providers, fitness professionals, and public health practitioners should encourage adults to adopt and maintain physical activity at recommended levels to lower risks of multiple cancers. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy