SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Brogden Graham) "

Sökning: WFRF:(Brogden Graham)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brogden, Graham, et al. (författare)
  • Methods to study lipid alterations in neutrophils and the subsequent formation of neutrophil extracellular traps
  • 2017
  • Ingår i: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; 2017:121
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid analysis performed by high performance thin layer chromatography (HPTLC) is a relatively simple, cost-effective method of analyzing a broad range of lipids. The function of lipids (e.g., in host-pathogen interactions or host entry) has been reported to play a crucial role in cellular processes. Here, we show a method to determine lipid composition, with a focus on the cholesterol level of primary blood-derived neutrophils, by HPTLC in comparison to high performance liquid chromatography (HPLC). The aim was to investigate the role of lipid/cholesterol alterations in the formation of neutrophil extracellular traps (NETs). NET release is known as a host defense mechanism to prevent pathogens from spreading within the host. Therefore, blood-derived human neutrophils were treated with methyl-β-cyclodextrin (MβCD) to induce lipid alterations in the cells. Using HPTLC and HPLC, we have shown that MβCD treatment of the cells leads to lipid alterations associated with a significant reduction in the cholesterol content of the cell. At the same time, MβCD treatment of the neutrophils led to the formation of NETs, as shown by immunofluorescence microscopy. In summary, here we present a detailed method to study lipid alterations in neutrophils and the formation of NETs.
  •  
2.
  • Dong, Thi Ngan, et al. (författare)
  • A multitask transfer learning framework for the prediction of virus-human protein–protein interactions
  • 2021
  • Ingår i: BMC Bioinformatics. - : BioMed Central. - 1471-2105. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Viral infections are causing significant morbidity and mortality worldwide. Understanding the interaction patterns between a particular virus and human proteins plays a crucial role in unveiling the underlying mechanism of viral infection and pathogenesis. This could further help in prevention and treatment of virus-related diseases. However, the task of predicting protein–protein interactions between a new virus and human cells is extremely challenging due to scarce data on virus-human interactions and fast mutation rates of most viruses.Results: We developed a multitask transfer learning approach that exploits the information of around 24 million protein sequences and the interaction patterns from the human interactome to counter the problem of small training datasets. Instead of using hand-crafted protein features, we utilize statistically rich protein representations learned by a deep language modeling approach from a massive source of protein sequences. Additionally, we employ an additional objective which aims to maximize the probability of observing human protein–protein interactions. This additional task objective acts as a regularizer and also allows to incorporate domain knowledge to inform the virus-human protein–protein interaction prediction model.Conclusions: Our approach achieved competitive results on 13 benchmark datasets and the case study for the SARS-CoV-2 virus receptor. Experimental results show that our proposed model works effectively for both virus-human and bacteria-human protein–protein interaction prediction tasks. We share our code for reproducibility and future research at https://git.l3s.uni-hannover.de/dong/multitask-transfer.
  •  
3.
  • Haid, Sibylle, et al. (författare)
  • Repurposing screen identifies novel candidates for broad-spectrum coronavirus antivirals and druggable host targets
  • 2024
  • Ingår i: Antimicrobial Agents and Chemotherapy. - : American Society for Microbiology. - 0066-4804 .- 1098-6596. ; 68:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Libraries composed of licensed drugs represent a vast repertoire of molecules modulating physiological processes in humans, providing unique opportunities for the discovery of host-targeting antivirals. We screened the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) repurposing library with approximately 12,000 molecules for broad-spectrum coronavirus antivirals and discovered 134 compounds inhibiting an alphacoronavirus and mapping to 58 molecular target categories. Dominant targets included the 5-hydroxytryptamine receptor, the dopamine receptor, and cyclin-dependent kinases. Gene knock-out of the drugs’ host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly modulated HCoV-229E infection, providing evidence that these compounds inhibited the virus through acting on their respective host targets. Counter-screening of all 134 primary compound candidates with SARS-CoV-2 and validation in primary cells identified Phortress, an AHR activating ligand, P-3622-targeting FDFT1, and Omaveloxolone, which activates the NFE2-like bZIP transcription factor 2 (NFE2L2) by liberating it from its endogenous inhibitor KEAP1, as antiviral candidates for both an Alpha- and a Betacoronavirus. This study provides an overview of HCoV-229E repurposing candidates and reveals novel potentially druggable viral host dependency factors hijacked by diverse coronaviruses.
  •  
4.
  • Krüger, Nadine, et al. (författare)
  • The upper respiratory tract of felids is highly susceptible to sars‐cov‐2 infection
  • 2021
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 22:19
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural or experimental infection of domestic cats and virus transmission from humans to captive predatory cats suggest that felids are highly susceptible to SARS‐CoV‐2 infection. However, it is unclear which cells and compartments of the respiratory tract are infected. To address this question, primary cell cultures derived from the nose, trachea, and lungs of cat and lion were inoculated with SARS‐CoV‐2. Strong viral replication was observed for nasal mucosa explants and tracheal air–liquid interface cultures, whereas replication in lung slices was less efficient. Infection was mainly restricted to epithelial cells and did not cause major pathological changes. Detection of high ACE2 levels in the nose and trachea but not lung further suggests that susceptibility of feline tissues to SARS‐CoV‐2 correlates with ACE2 expression. Collectively, this study demonstrates that SARS‐ CoV‐2 can efficiently replicate in the feline upper respiratory tract ex vivo and thus highlights the risk of SARS‐CoV‐2 spillover from humans to felids.
  •  
5.
  • Marek, Katarzyna, et al. (författare)
  • Persistent Infection of a Canine Histiocytic Sarcoma Cell Line with Attenuated Canine Distemper Virus Expressing Vasostatin or Granulocyte-Macrophage Colony-Stimulating Factor
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 23:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Canine histiocytic sarcoma (HS) represents a neoplasia with poor prognosis. Due to the high metastatic rate of HS, there is urgency to improve treatment options and to prevent tumor metastases. Canine distemper virus (CDV) is a single-stranded negative-sense RNA (ssRNA (-)) virus with potentially oncolytic properties. Moreover, vasostatin and granulocyte-macrophage colony-stimulating factor (GM-CSF) are attractive molecules in cancer therapy research because of their anti-angiogenetic properties and potential modulation of the tumor microenvironment. In the present study, an in vitro characterization of two genetically engineered viruses based on the CDV strain Onderstepoort (CDV-Ond), CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF was performed. Canine histiocytic sarcoma cells (DH82 cells) were persistently infected with CDV-Ond, CDV-Ondneon, CDV-Ondneon-vasostatin and CDV-Ondneon-GM-CSF and characterized on a molecular and protein level regarding their vasostatin and GM-CSF production. Interestingly, DH82 cells persistently infected with CDV-Ondneon-vasostatin showed a significantly increased number of vasostatin mRNA transcripts. Similarly, DH82 cells persistently infected with CDV-Ondneon-GM-CSF displayed an increased number of GM-CSF mRNA transcripts mirrored on the protein level as confirmed by immunofluorescence and Western blot. In summary, modified CDV-Ond strains expressed GM-CSF and vasostatin, rendering them promising candidates for the improvement of oncolytic virotherapies, which should be further detailed in future in vivo studies.
  •  
6.
  • Neumann, Ariane, et al. (författare)
  • Extracellular traps : An ancient weapon of multiple kingdoms
  • 2020
  • Ingår i: Biology. - : MDPI AG. - 2079-7737. ; 9:2
  • Forskningsöversikt (refereegranskat)abstract
    • The discovery, in 2004, of extracellular traps released by neutrophils has extended our understanding of the mode of action of various innate immune cells. This fascinating discovery demonstrated the extracellular trapping and killing of various pathogens by neutrophils. During the last decade, evidence has accumulated showing that extracellular traps play a crucial role in the defence mechanisms of various cell types present in vertebrates, invertebrates, and plants. The aim of this review is to summarise the relevant literature on the evolutionary history of extracellular traps used as a weapon in various kingdoms of life.
  •  
7.
  • Ricke-Hoch, Melanie, et al. (författare)
  • Impaired immune response mediated by prostaglandin E2 promotes severe COVID-19 disease
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:8
  • Tidskriftsartikel (refereegranskat)abstract
    • The SARS-CoV-2 coronavirus has led to a pandemic with millions of people affected. The present study finds that risk-factors for severe COVID-19 disease courses, i.e. male sex, older age and sedentary life style are associated with higher prostaglandin E2 (PGE2) serum levels in blood samples from unaffected subjects. In COVID-19 patients, PGE2 blood levels are markedly elevated and correlate positively with disease severity. SARS-CoV-2 induces PGE2 generation and secretion in infected lung epithelial cells by upregulating cyclo-oxygenase (COX)-2 and reducing the PG-degrading enzyme 15-hydroxyprostaglan-din-dehydrogenase. Also living human precision cut lung slices (PCLS) infected with SARS-CoV-2 display upregulated COX-2. Regular exercise in aged individuals lowers PGE2 serum levels, which leads to increased Paired-Box-Protein-Pax-5 (PAX5) expression, a master regulator of B-cell survival, proliferation and differentiation also towards long lived memory B-cells, in human pre-B-cell lines. Moreover, PGE2 levels in serum of COVID-19 patients lowers the expression of PAX5 in human pre-B-cell lines. The PGE2 inhibitor Taxifolin reduces SARS-CoV-2-induced PGE2 production. In conclusion, SARS-CoV-2, male sex, old age, and sedentary life style increase PGE2 levels, which may reduce the early anti-viral defense as well as the development of immunity promoting severe disease courses and multiple infections. Regular exercise and Taxifolin treatment may reduce these risks and prevent severe disease courses.
  •  
8.
  • Zapatero-Belinchón, Francisco J., et al. (författare)
  • Fluvastatin mitigates SARS-CoV-2 infection in human lung cells
  • 2021
  • Ingår i: iScience. - : Elsevier. - 2589-0042. ; 24:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Clinical data of patients suffering from COVID-19 indicates that statin therapy, used to treat hypercholesterolemia, is associated with a better disease outcome. Whether statins directly affect virus replication or influence the clinical outcome through modulation of immune responses is unknown. We therefore investigated the effect of statins on SARS-CoV-2 infection in human lung cells and found that only fluvastatin inhibited low and high pathogenic coronaviruses in vitro and ex vivo in a dose-dependent manner. Quantitative proteomics revealed that fluvastatin and other tested statins modulated the cholesterol synthesis pathway without altering innate antiviral immune responses in infected lung epithelial cells. However, fluvastatin treatment specifically downregulated proteins that modulate protein translation and viral replication. Collectively, these results support the notion that statin therapy poses no additional risk to individuals exposed to SARS-CoV-2 and that fluvastatin has a moderate beneficial effect on SARS-CoV-2 infection of human lung cells.
  •  
9.
  • Zapatero-Belinchón, Francisco J., et al. (författare)
  • Interdependent Impact of Lipoprotein Receptors and Lipid-Lowering Drugs on HCV Infectivity
  • 2021
  • Ingår i: Cells. - : MDPI. - 2073-4409. ; 10:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The HCV replication cycle is tightly associated with host lipid metabolism: Lipoprotein receptors SR-B1 and LDLr promote entry of HCV, replication is associated with the formation of lipid-rich membranous organelles and infectious particle assembly highjacks the very‑low-density lipoprotein (VLDL) secretory pathway. Hence, medications that interfere with the lipid metabolism of the cell, such as statins, may affect HCV infection. Here, we study the interplay between lipoprotein receptors, lipid homeostasis, and HCV infection by genetic and pharmacological interventions. We found that individual ablation of the lipoprotein receptors SR‑B1 and LDLr did not drastically affect HCV entry, replication, or infection, but double lipoprotein receptor knock-outs significantly reduced HCV infection. Furthermore, we could show that this effect was neither due to altered expression of additional HCV entry factors nor caused by changes in cellular cholesterol content. Strikingly, whereas lipid‑lowering drugs such as simvastatin or fenofibrate did not affect HCV entry or infection of immortalized hepatoma cells expressing SR-B1 and/or LDLr or primary human hepatocytes, ablation of these receptors rendered cells more susceptible to these drugs. Finally, we observed no significant differences between statin users and control groups with regards to HCV viral load in a cohort of HCV infected patients before and during HCV antiviral treatment. Interestingly, statin treatment, which blocks the mevalonate pathway leading to decreased cholesterol levels, was associated with mild but appreciable lower levels of liver damage markers before HCV therapy. Overall, our findings confirm the role of lipid homeostasis in HCV infection and highlight the importance of the mevalonate pathway in the HCV replication cycle.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy