SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Broman Karolina Universitetslektor 1969 ) "

Sökning: WFRF:(Broman Karolina Universitetslektor 1969 )

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Winka, Katarina, 1970-, et al. (författare)
  • Pedagogiskt mentorskap för hållbart lärarskap
  • 2020
  • Ingår i: nu2020. ; , s. 207-208
  • Konferensbidrag (refereegranskat)abstract
    • Mentorskap bygger på att en erfaren yrkesutövare (mentor) hjälper någon annan (adept) att bli mer kompetent i sitt yrke. Den grundläggande idén är att ta vara på och sprida erfarenhetsbaserad kunskap inom organisationen. Genom att bidra till en kollegas professionella utveckling kan mentorn utveckla sina egna kunskaper, förmågor och förhållningssätt. För adepten är det en möjlighet att utveckla sig och sin egen roll som lärare inom akademin (Mathisen, 2009; Eastcott, 2016).Syftet med denna presentation är att delge erfarenheter från ett pedagogiskt mentorskapsprogram som utvecklats, genomförts och utvärderats vid Umeå universitet. Mentorskapsprogrammet är ett komplement till det högskolepedagogiska utbildningsutbudet och samtidigt ett sätt att tillvara ta de pedagogiskt meriterade lärarnas kompetens och vilja att bidra till hållbar pedagogisk utveckling.Umeå universitet har en pedagogisk meriteringsmodell där lärare kan ansöka om prövning mot kriterier för utnämning till meriterad eller excellent lärare. Modellen har haft stort genomslag och det finns över 200 utnämnda lärare. En fråga som uppstått är hur lärosätet kan ta tillvara dessa lärares erfarenhet, engagemang och kompetens. I en undersökning av de utnämnda lärarnas förväntningar och önskemål framkom en stark vilja att dela med sig av sin kunskap och inspirera andra till pedagogisk utveckling. Detta ledde till att ett pedagogiskt mentorsprogram initierades 2019 med syftet att främja erfarenhetsutbyte och kollegial samverkan inom lärosätet.Mentorskapsprogrammet består av en utbildning för mentorerna och ett pedagogiskt mentorstöd för adepterna. Ett intyg motsvarande en veckas högskolepedagogisk kurs utfärdas för de som genomför mentorsutbildningen och agerar mentorer. Vid antagning till mentorsplatserna prioriteras sökande med lång undervisningserfarenhet och ett reflekterande förhållningssätt till lärarrollen. Med andra ord: utnämning i Umeå universitetets pedagogiska meriteringsmodell är meriterande. För adepterna gäller inga speciella urvalskriterier förutom intresse att utveckla sin pedagogiska kompetens.I matchningen av mentorer och adepter lades särskild vikt vid fakultets- och ämnesöverskridande konstellationer. Potentiella ämnesmässiga kopplingar undveks med argumentet att den akademiska lärarrollen och den pedagogiska verksamheten ska vara i fokus. I pilotomgången ingick sju mentor/adeptpar varav sex slutförde programmet.Utvärderingen bekräftade vikten av att programmet är universitetsövergripande och att mentorer och adepter matchas över fakultets- och ämnesgränser. Det utgör även ett exempel på hur de meriterade och excellenta lärarnas engagemang och drivkraft för pedagogisk utveckling kan tas tillvara. Som helhet representerar det pedagogiska mentorskapsprogrammet en win-win-situation, där både adepter och mentorer växer i sin identitet och professionella roll.Målgruppen för presentationen inkluderar alla som är nyfikna på undervisning/utbildning/högskolepedagogik, pedagogiska utvecklare samt personer med pedagogiska ledarskapsuppdrag. ReferenserMathisen, P. 2009. Mentor: i teori och praktik. Studentlitteratur: LundEastcott, D. (2016). Coaching and mentoring in academic development (pp. 86–102). In: Popovic, C., & Baume, D. (2016). Advancing practice in academic development. Taylor and Francis Inc.
  •  
2.
  • Broman, Karolina, Universitetslektor, 1969- (författare)
  • 150-åring i nytt format
  • 2019
  • Ingår i: Kemisk tidskrift. ; 1, s. 24-27
  • Tidskriftsartikel (populärvet., debatt m.m.)
  •  
3.
  • Broman, Karolina, Universitetslektor, 1969-, et al. (författare)
  • Application of Digital Tools in Chemistry Education : Virtual Reality, Augmented Reality and Gamification
  • 2019
  • Ingår i: 2019 ESERA.
  • Konferensbidrag (refereegranskat)abstract
    • In a politician-decided top-down implementation of digital tools into the school curricula, chemistry education researchers and teacher educators try to develop relevant and meaningful digital tools possible to use to increase students’ learning. To exemplify and explore the impact of digital tools on students’ learning processes, two chemistry education projects are discussed in this presentation. When are digital tools applicable to enhance learning and how should teachers embed and frame this application of the digital tools? The projects present how Virtual Reality (VR), Augmented Reality (AR) and gamification can be used to enhance students’ perceived interest and value.
  •  
4.
  • Broman, Karolina, 1969- (författare)
  • Chemistry: content, context and choices : towards students' higher order problem solving in upper secondary school
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chemistry is often claimed to be difficult, irrelevant, and uninteresting to school students. Even students who enjoy doing science often have problems seeing themselves as being scientists. This thesis explores and challenges the negative perception of chemistry by investigating upper secondary students’ views on the subject. Based on students’ ideas for improving chemistry education to make the subject more interesting and meaningful, new learning approaches rooted in context-based learning (CBL) are presented. CBL approaches are applied in several countries to enhance interest, de-emphasise rote learning, and improve students’ higher order thinking.Students’ views on upper secondary school chemistry classes in combination with their problem- solving strategies and application of chemistry content knowledge when solving context-based chemistry tasks were investigated using a mixed methods approach. Questionnaire responses, written solutions to chemistry problems, classroom observations, and think-aloud interviews with upper secondary students at the Natural Science Programme and with experts working on context- based chemistry tasks were analysed to obtain a general overview and explore specific issues in detail.Several students were identified who had positive feelings about chemistry, found it interesting, and chose to continue with it beyond the compulsory level, mainly with the aim of future university studies or simply because they enjoyed it. Their suggestions for improving school chemistry by connecting it to everyday life prompted an exploration of CBL approaches. Studies on the cognitive learning outcomes arising from the students’ work on context-based tasks revealed that school chemistry heavily emphasises the recall of memorised facts. However, there is evidence of higher order thinking when students’ problem-solving processes are scaffolded using hints based on the Model of Hierarchical Complexity in Chemistry (MHC-C). In addition, the contextualisation of problems is identified as something that supports learning rather than distracting students.To conclude, the students in this thesis are interested in chemistry and enjoy chemistry education, and their motives for choosing to study chemistry at the post-compulsory level are related to their aspirations; students’ identity formation is important for their choices. Because students are accustomed to recalling facts and solving chemistry problems that have “one single correct answer”, they find more open problems that demand higher order thinking (e.g. knowledge transfer) unfamiliar and complex, suggesting that such processes should be practiced more often in school chemistry. 
  •  
5.
  • Broman, Karolina, Universitetslektor, 1969- (författare)
  • Chemistry Teachers' Development of Relevant and Interesting Context-Based Open-Ended Problems
  • 2019
  • Ingår i: ESERA 2019.
  • Konferensbidrag (refereegranskat)abstract
    • Context-based learning (CBL) approaches have become popular in several parts of the world. The intentions with this more unconventional teaching and learning approach are to frame content knowledge into interesting and relevant contexts and to engage students to higher interest, and thereby, hopefully, increased learning. An educational challenge has been to design suitable tasks adapted to both affective and cognitive aspects. To assess students’ chemistry content knowledge, tasks possible to use in class need to be developed, and to make the tasks interesting and relevant to the students, the teachers are central. In this project, chemistry teachers attending two different teacher conferences have worked together with a chemistry education researcher to develop context-based everyday-life open-ended chemistry problems. In this presentation, the process of the development of the context-based problems will be explored, and the ongoing work where the problems are applied in class where students have worked together solving the problems will be discussed.
  •  
6.
  •  
7.
  • Broman, Karolina, Universitetslektor, 1969- (författare)
  • Digital tools and techniques in chemistry
  • 2020
  • Konferensbidrag (refereegranskat)abstract
    • After the two first decades of the 21st century, digital tools and techniques are, in several countries, becoming an integrated part of school and university chemistry teaching. The tools are, according to students, often perceived exciting and fun, but from a teacher’s perspective, they have to enable learning to be relevant and meaningful (Seery & McDonnell, 2013). According to McKnight and colleagues (2016), digital tools and technology can have five different functions: (i) providing efficiencies, (ii) giving students access to broader, deeper and “richer” learning resources, (iii) personalising instruction to fit different learning needs, (iv) connecting people to extend the learning community, and (v) transforming teachers’ role as educators (McKnight et al., 2016, p. 207). In this presentation, these functions will be elaborated on from both a teacher and student perspective through chemistry education projects where digital tools and techniques have been applied to enhance students’ cognitive and affective learning.Visualisation of chemical representations, e.g., molecular structures and reaction mechanisms, is a foundation important for students to master to fully understand chemistry (e.g., Taber, 2018). Spatial ability, i.e., the move between two- and three-dimensional thinking, is complex, and students need to practice it (Buckely, Seery, & Canty, 2018; Harle & Towns, 2011). To practice spatial ability, digital tools as Virtual and Augmented Reality (VR and AR) have been applied to visualise chemical representations (Ferrell et al., 2019; Parong & Mayer, 2018), and in the projects, students’ learning has been analysed. Teachers’ use of the tools will be discussed from the TPACK model (Voogt et al, 2013). Students’ and teachers’ perspectives on digital chemistry education will be problematised.
  •  
8.
  • Broman, Karolina, Universitetslektor, 1969-, et al. (författare)
  • Digital Tools in Chemistry Education - Virtual/Augmented Reality & Gamification
  • 2018
  • Konferensbidrag (refereegranskat)abstract
    • Today there is a digital boom within education, in Sweden all school curricula are re-written where use of digital tools has been added as mandatory in all subject syllabi from the autumn of 2018. This has made teachers, as well as educational researchers, interested to find relevant digital tools where students enhance their learning, not only finding them fun and exciting. In this presentation, the role of technologies as Virtual Reality (VR), Augmented Reality (AR) and gamification is explored to study how students learn chemistry, both regarding affective as well as cognitive aspects of learning [1]. Students’ perceived interest and value are studied using Krapp and Prenzel’s framework of interest [2] and Wenger and colleagues framework of value creation in communities and networks [3]. Part of the interest in VR technology has to do with the availability when a smartphone can be converted to a VR headset at a very low cost. AR technology is much more complicated and expensive, however, the multiple sensory modalities makes it interesting [4]. Gamification in the classroom, where application of game-design in learning processes, has recently attracted a lot of attention [5]. The main aim with gamification is to enhance students’ internal motivation through for example clues and possibilities to “level-up”.To explore how digital tools influence students learning, we will present two projects. The first is a university organic chemistry course where students practice their spatial competence using VR as a tool to visualise stereochemistry. The students study stereoisomers (for example simple molecules as 2-chlorobutane and more complex stereoisomers as muscarine and nicotine) and we have studied their perceived interest and value of the digital tools using a survey, interviews and observations. In the second project, engineering students have developed a teaching module for upper secondary chemistry using gamification, VR and AR as a way to motivate school students to learn about the protein synthesis. Here, we have conducted a survey and interviews with both the engineering students who developed the module, as well with the school students and teachers who have used the module. In the presentation, possibilities and challenges with the digital tools will be discussed, and examples for practice will be demonstrated.
  •  
9.
  • Broman, Karolina, Universitetslektor, 1969- (författare)
  • Engagement and relevance through context-based, everyday life, open-ended chemistry problems
  • 2020
  • Ingår i: Engaging learners with chemistry. - London, UK : Royal Society of Chemistry. - 9781788015080 - 9781788016087 - 9781839161278 ; , s. 52-72
  • Bokkapitel (refereegranskat)abstract
    • Context-based learning approaches have been introduced in several countries all over the world to make chemistry more relevant and interesting, and to enhance students' learning outcomes. This more unconventional approach towards chemistry, emphasises meaningful learning through higher-order thinking. An educational challenge has been to develop suitable tasks adapted to both affective and cognitive aspects of learning. To assess students' chemistry content knowledge and to engage students, tasks for use in class need to be designed. Also, to make the tasks interesting and relevant to the students, the teachers are central. In an on-going project, Swedish chemistry teachers attending two different teacher conferences have worked together to suggest contexts that are possible to develop further into context-based everyday life open-ended chemistry problems. In this chapter, teachers' suggestions of relevant and interesting contexts will be described through frameworks of interest, relevance and engagement. Moreover, the design process of context-based problems will be elaborated upon and the upcoming work where the problems are applied in class where students solve the problems, will be explored. Final reflections will be made regarding this type of teacher professional development program (i.e. chemistry teacher conferences), where practitioners meet researchers for design-based research and how these initiatives hopefully empower teachers in their profession.
  •  
10.
  • Broman, Karolina, Universitetslektor, 1969-, et al. (författare)
  • Engineering students going “flipped” : a new teaching approach in organic chemistry to increase students’ interest and value
  • 2019
  • Ingår i: 7:e utvecklingskonferensen för Sveriges ingenjörsutbildningar. - : Luleå tekniska universitet.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This paper presents a longitudinal design-based research study where a university organic chemistry course has changed teaching and learning focus, from more conventional teaching into flipped teaching. Engineering students have been followed with surveys, observations, interviews and analysis of how the teaching material was used; results on students’ perceived interest and value are discussed. The project shows that flipped learning with peer instruction is an applicable way to increase students’ interest in organic chemistry and perceived value of the problem-solving process and peer instruction when learning chemistry. Moreover, the paper also discusses the design-based aspect, and how researchers and practitioners can collaborate to develop university teaching with an aim to enhance students’ higher-order thinking and deep learning.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy