SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Broström Markus) "

Sökning: WFRF:(Broström Markus)

  • Resultat 1-10 av 136
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boman, Christoffer, et al. (författare)
  • Development of innovative small(micro)-scale biomass-based CHP technologies
  • 2017
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • To enhance the overall efficiency of the use of biomass in the energy sector in Europe, the large electricity production potential from small-scale biomass heating systems should be utilised. So far, no technologically sound (in terms of efficiency and reliability) and economically affordable micro- and small-scale biomass CHP technologies are, however, available. Therefore, the present ERA-NET project (MiniBioCHP) aimed at the further development and test of new CHP technologies based on small-scale biomass combustion in the electric capacity range between some W and 100 kW. Within the project, an international consortium consisting of 12 partners from 4 countries, including university institutions, institutes and industry (both engineering and manufacturing), collaborated closely to perform high level R&D on three promising micro/small-scale biomass based CHP technologies which are covering a broad range of applications in the residential heating sector. The Austrian engineering company BIOS, coordinated the international project. The project was based on earlier basic research and development work related to these promising new technologies and aimed at the achievement of a technological level which allows a first (commercial) demonstration after the end of the project. The three CHP concepts included in the MiniBioCHP project were;1. Pellet stoves with a thermoelectric generator (TEG)2. Small-scale biomass boilers (10-30 kWth) with a micro-ORC process3. High temperature heat exchanger (HT-HE) for an externally fired gas turbine (EFGT)The Swedish part of the project was focused on the development of the concept of biomass based EFGT with dedicated R&D activities related to the development of the HT-HE system. The Swedish project consisted of the research partners Umeå University (project leader), Luleå University of Technology, Chalmers University of Technology and RISE Research Institutes of Sweden, together with the industrial partners Enertech AB/Osby Parca and Ecergy. The expertise of the Swedish partners regarding ash related problems, grate boiler combustion and modelling, deposit formation and high temperature corrosion, were combined with the know-how of a Polish partner regarding HT-HE design, construction, testing and optimisation.The HT-HE is the most crucial component in EFGT processes significantly influencing the investment costs, availabilities as well as the efficiencies that can be achieved. With a thermal capacity from several hundred kW up to 2-3 MWth) the CHP technology based on a biomass boiler and an EFGT is suitable for district heating systems, or process heat consumers. The electricity produced by the gas turbine (up to some 100 kWel) can be used to cover the own electricity consumption of a company and/or fed into the grid. Even though the concept of biomass based EFGT has been an interesting alternative for small-scale CHP production for some decades, and R&D activities have been undertaken, tackling both economic and technical aspects, only a few pilot-plants have been in operation and no initiative has so far reached the level of commercial implementation. Thus, the concept of EFGT fed with biomass is still considered to be in a rather early development stage and the main technical challenges are related to alkali deposit induced corrosion and thermal stress of the HT-HE material, turbine design/operation and system integration.Within the present project, a HT-HE prototype aimed for an EFGT system was therefore designed, constructed and successfully tested at flue gas temperatures up to 900°C. Thus, appropriate guidelines for a compact design of the HT-HE and recommendations have been worked out to minimize thermal stresses as well as ash related problems regarding ash deposit formation and high temperature corrosion in a biomass boiler system. Furthermore, different concepts for the overall biomass based EFGT system have been worked out and evaluated. The outcome of the project will hopefully be used in the further development work and form the basis for a first testing and demonstration plant within the coming years.
  •  
2.
  • Chambi, Diego, et al. (författare)
  • Production of Exopolysaccharides by Cultivation of Halotolerant Bacillus atrophaeus BU4 in Glucose- and Xylose-Based Synthetic Media and in Hydrolysates of Quinoa Stalks
  • 2022
  • Ingår i: Fermentation. - : MDPI AG. - 2311-5637. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A halotolerant, exopolysaccharide-producing bacterium isolated from the Salar de Uyuni salt flat in Bolivia was identified as Bacillus atrophaeus using next-generation sequencing. Comparisons indicate that the genome most likely (p-value: 0.0024) belongs to a subspecies previously not represented in the database. The growth of the bacterial strain and its ability to produce exopolysaccharides (EPS) in synthetic media with glucose or xylose as carbon sources, and in hydrolysates of quinoa stalks, was investigated. The strain grew well in all synthetic media, but the growth in glucose was better than that in xylose. Sugar consumption was better when initial concentrations were low. The growth was good in enzymatically produced cellulosic hydrolysates but was inhibited in hemicellulosic hydrolysates produced using hydrothermal pretreatment. The EPS yields were up to 0.064 g/g on initial glucose and 0.047 g/g on initial xylose, and was higher in media with relatively low sugar concentrations. The EPS was isolated and purified by a sequential procedure including centrifugation, cold ethanol precipitation, trichloroacetic acid treatment, dialysis, and freeze-drying. Glucose and mannose were the main sugars identified in hydrolyzed EPS. The EPS was characterized by size-exclusion chromatography, Fourier-transform infrared (FTIR) spectroscopy, heteronuclear single-quantum coherence nuclear magnetic resonance (HSQC NMR) spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis. No major differences were elucidated between EPS resulting from cultivations in glucose- or-xylose-based synthetic media, while some divergences with regard to molecular-weight averages and FTIR and HSQC NMR spectra were detected for EPS from hydrolysate-based media.
  •  
3.
  • Eriksson, Matias, et al. (författare)
  • Characterization of ring deposits inside a quicklime producing long rotary kiln
  • 2019
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 33:11, s. 11731-11740
  • Tidskriftsartikel (refereegranskat)abstract
    • Ring deposits are common problems in rotary kiln operations. The ring is constantly subjected to thermal and mechanical wear counteracting the growth of the ring. If the ring hardens or if the growth of the ring is too rapid the kiln needs to be shut down and the ring removed, reducing the operational time and profitability of the process. In the present study, ring deposits from a limestone fed long rotary kiln producing quicklime was sampled and characterized in detail by SEM-EDS, dynamic rate TG and XRD. This work identifies three hardening mechanisms active in the kiln, an increased densification of the ring deposits near the refractory surface, the formation of calcite and spurrite through carbonation of the ring deposits, and the intrusion of molten fuel ash and product into the refractory, resulting in a strong attachment of the deposit to the refractory surface. The work also concludes that a significant part of the ring deposit has its origin in the fuel ash, contributing to deposit mass and increasing ring growth rate.
  •  
4.
  • Eriksson, Matias, et al. (författare)
  • Impact of limestone surface impurities on quicklime product quality
  • 2024
  • Ingår i: Minerals. - : MDPI. - 2075-163X. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Quicklime is produced through the thermal processing of limestone in industrial kilns. During quarry operations, fine particulate quarry dust adheres to limestone lump surfaces, increasing the bulk concentration of impurities in limestone products. During thermal processing in a kiln, impurities such as Si, Mg, Al, Fe, and Mn react with Ca, reducing quicklime product quality. Which reactant phases are formed, and the extent to which these result in a reduction in quality, has not been extensively investigated. The present study investigated as-received and manually washed limestone product samples from two operational quarries using elemental compositions and a developed predictive multi-component chemical equilibrium model to obtain global phase diagrams for 1000–1500 °C, corresponding to the high-temperature zone of a lime kiln, identifying phases expected to be formed in quicklime during thermal processing. The results suggest that impurities found on the surface of the lime kiln limestone feed reduce the main quality parameter of the quicklime products, i.e., calcium oxide, CaO (s), content by 0.8–1.5 wt.% for the investigated materials. The results also show that, in addition to the effect of impurities, the quantity of CaO (s) varies greatly with temperature. More impurities result in more variation and a greater need for accurate temperature control of the kiln, where keeping the temperature below approximately 1300 °C, that of Hatrurite formation, is necessary for a product with higher CaO (s).
  •  
5.
  •  
6.
  • Holmgren, Per, 1982-, et al. (författare)
  • Slag Formation During Entrained Flow Gasification : Calcium Rich Bark Fuel with KHCO3 Additive
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Managing slag properties is of utmost importance for successful operation of entrained flow gasifiers. The present study details some aspects of slag formed from a softwood bark fuel, and especially the situation with only small amounts of mineral contaminants, meaning composition is shifted from Si- towards P-dominated ash. Wood bark with and without KHCO3 additive was gasified between 850 °C and 1300 °C at O2 stoichiometric ratio (λ) 0.6 to study the resulting ash properties and the influence of the additive. The ash particles collided with a flat impact probe inside the hot reactor, with particle impact angles varied between 90° to 30°. The reactor and probe were constructed to allow for long-distance microscope data collection close to the surface of the probe. In situ PIV and SEM-EDS of deposit samples from lab scale entrained flow gasification experiments were used for evaluation, while XRD was used to characterize carbonates. High potassium release was found but numerous spherical ash particles indicated lower ash melting temperatures than expected from the bulk ash composition. These new findings propose a mechanism for melt formations involving carbonates rich in potassium and phosphorous, followed by K-release and calcination leading to solidification.
  •  
7.
  •  
8.
  • Kumar Wagri, Naresh, 1988- (författare)
  • Assessment of bio-based fuel ash effects on magnesia refractory materials in quicklime production kilns
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Limestone is calcined into quicklime in lime kilns at temperatures above 1000°C. Heat is supplied through combustion inside the kilns, which are insulated with a lining of refractory bricks to mitigate heat loss and to protect the kiln from the hot, chemically aggressive, and mechanically abrasive environment. While magnesia bricks have proven to be effective lining materials, they are still susceptible to extensive wear in lime kilns, especially in the burn zone. Refractory corrosion, in particular, can occur when melted fuel ash infiltrates the refractory materials through pores and small cracks. This resultant wear can lead to high maintenance and operational costs, often due to unplanned kiln shutdowns.To reduce the release of fossil-based carbon dioxide into the atmosphere from lime production kilns, there is a growing interest in introducing bio-based fuels with only relatively minor modifications to the process. Biomass fuels can be sourced from bio-based waste streams from industries or be specifically cultivated for combustion. However, the ash content and properties of bio-based fuels tend to be problematic from an ash chemistry perspective. Therefore, before introducing a new fuel source, it is essential to investigate its potential effects on the kiln lining material. In this thesis work, the interactions between melted olive pomace ash and coal ash with commercially available magnesia refractory materials, primarily composed of periclase (MgO) with minor amounts of spinel (MgAl2O4), were studied. A procedure for quantifying the intrusion depths was described. Refractory samples were exposed to the fuel ashes under a simulated lime kiln atmosphere with high CO2 levels at 1200 and 1400°C for 15 and 60 minutes. Cold crushing strength tests were conducted on refractory samples exposed to coal and olive pomace ash, along with CaO powder, at 1400°C for 96 hours. Additionally, postmortem analyses of spent MgO-based refractory bricks were carried out to investigate their chemical characterization and resistance to slag attack after serving as part of the lining in a quick lime rotary kiln for six months.The morphology and elemental compositions of the exposed samples were examined using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Crystalline phases were investigated with powder X-ray diffraction. Thermodynamic equilibrium calculations were performed to further investigate the ash’s melting behavior in contact with the refractories.The results indicated that the potassium-rich olive pomace ash exhibited a greater tendency to infiltrate compared to the silicon-rich coal ash, while the latter formed a glassy melt layer on top of the refractory samples. The ash slags primarily infiltrated through the porous matrix and grain boundaries of the refractory materials. Also, refractory phases were observed in both types of ashes, indicating migration of refractory constituents. K2MgSiO4 phase was found in the olive pomace ash residues on top of the samples, both for the 1200°C and 1400°C exposures. Similarly, Al6Si2O13 phase was dominant in the residual coal ash, in both the 1200°C and 1400°C exposed samples. None of these phases were present in the original ashes.The results of the postmortem analysis revealed that there was no potassium (K) from the fuel ash present on the hot side of the refractory bricks. However, some K was detected in the middle and back parts of the bricks. On the other hand, some phases, possibly connected to degradation, could be found on the hot side of the bricks, where most of the wear was observed.The crushing strengths increased after exposure for all samples, except for those exposed exclusively to coal ash. One possible explanation for this is that the refractory materials exhibited a sintered structure, as a result of their interaction with the ashes and CaO. However, in the samples exposed to coal ash, forsterite (Mg2SiO4) was identified, which can be considered a corrosion product.
  •  
9.
  •  
10.
  • Kumar Wagri, Naresh, et al. (författare)
  • High temperature interactions between coal ash and MgO-based refractories in lime kiln conditions
  • 2023
  • Ingår i: Fuel. - : Elsevier. - 0016-2361 .- 1873-7153. ; 342
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnesium oxide (MgO)-based refractories are commonly used in quicklime and cement rotary kilns. At the high temperatures in the kiln burn zone, the infiltration of molten fuel ash into the refractory can occur. Subsequent chemical interactions can cause refractory wear that inflicts high maintenance costs and loss of production. To improve refractory reliability, it is necessary to increase the understanding of the interactions between fuel ash slag and refractory liner materials. Three commercially available MgO-based refractory materials were exposed to coal ash at 1200 °C and 1400 °C for between 15 and 60 min under a CO2-rich gaseous environment. Hot slag from the coal ash infiltrated the refractories and the infiltration depths were estimated with scanning electron microscope with energy dispersive X-ray spectroscopy. Based on detailed elemental and microstructure analyses, the interactions between ash and refractory were examined. Molten silicates infiltrated the refractory through grain boundaries and pores into depths of up to 2.8 mm. Powder X-ray diffraction of the exposed refractory samples indicated that MgO grains reacted with SiO2-containing phases to form Mg2SiO4. This was identified as a corrosion product whose formation was supported by thermochemical equilibrium calculations. Elevated Mg content was found in the ash residue on top of the samples, indicating the dissolution or dislocation of refractory components. In addition, phases such as MgO were identified in the ash residue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 136
Typ av publikation
tidskriftsartikel (55)
konferensbidrag (51)
annan publikation (10)
doktorsavhandling (9)
licentiatavhandling (5)
rapport (4)
visa fler...
forskningsöversikt (1)
patent (1)
visa färre...
Typ av innehåll
övrigt vetenskapligt/konstnärligt (71)
refereegranskat (62)
populärvet., debatt m.m. (3)
Författare/redaktör
Broström, Markus (119)
Backman, Rainer (22)
Eriksson, Matias (21)
Skoglund, Nils (21)
Boman, Christoffer (18)
Holmgren, Per (18)
visa fler...
Umeki, Kentaro (17)
Carlborg, Markus, 19 ... (17)
Boström, Dan (14)
Öhman, Marcus (11)
Thyrel, Mikael (8)
Wiinikka, Henrik (8)
Molinder, Roger (6)
Borén, Eleonora (6)
Larsson, Sylvia (5)
Lestander, Torbjörn (5)
Nordin, Anders (5)
Schmidt, Florian M. (4)
Qu, Zhechao (4)
Ramser, Kerstin (4)
Wang, Liang (4)
Skreiberg, Øyvind (4)
Fagerström, Jonathan (4)
Carlborg, Markus (4)
Pommer, Linda (4)
Grimm, Alejandro (4)
Andersson, Christer (3)
Berg, Magnus (3)
Albers, Eva, 1966 (2)
Helgesson, Anna (2)
Rudolfsson, Magnus (2)
Aguirre Castillo, Jo ... (2)
Sundman, Ola (2)
Gentili, Francesco (2)
Jönsson, Leif J (2)
Hedenström, Mattias, ... (2)
Gorzsás, András (2)
Kirtania, Kawnish (2)
Weiland, Fredrik (2)
Carlsson, Jörgen (2)
Öhman, Marcus, 1969- (2)
Carrasco, Cristhian (2)
Samuelsson, Robert (2)
Biswas, Amit (2)
Weidemann, Eva (2)
Rebbling, Anders (2)
Steinvall, Erik (2)
Averheim, Andreas (2)
Lindström, Erika (2)
Strandberg, Anna, Dr ... (2)
visa färre...
Lärosäte
Umeå universitet (119)
Luleå tekniska universitet (29)
Sveriges Lantbruksuniversitet (11)
RISE (7)
Chalmers tekniska högskola (4)
Göteborgs universitet (2)
visa fler...
Kungliga Tekniska Högskolan (2)
Stockholms universitet (1)
Linnéuniversitetet (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (133)
Svenska (3)
Forskningsämne (UKÄ/SCB)
Teknik (114)
Naturvetenskap (29)
Lantbruksvetenskap (6)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy