SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Browning Kathryn) "

Sökning: WFRF:(Browning Kathryn)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boge, Lukas, et al. (författare)
  • Peptide-Loaded Cubosomes Functioning as an Antimicrobial Unit against Escherichia coli
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society. - 1944-8244 .- 1944-8252. ; 11:24, s. 21314-21322
  • Tidskriftsartikel (refereegranskat)abstract
    • Dispersions of cubic liquid crystalline phases, also known as cubosomes, have shown great promise as delivery vehicles for a wide range of medicines. Due to their ordered structure, comprising alternating hydrophilic and hydrophobic domains, cubosomes possess unique delivery properties and compatibility with both water-soluble and -insoluble drugs. However, the drug delivery mechanism and cubosome interaction with human cells and bacteria are still poorly understood. Herein, we reveal how cubosomes loaded with the human cathelicidin antimicrobial peptide LL-37, a system with high bacteria-killing effect, interact with the bacterial membrane and provide new insights into the eradication mechanism. Combining the advanced experimental techniques neutron reflectivity and quartz crystal microbalance with dissipation monitoring, a mechanistic drug delivery model for LL-37-loaded cubosomes on bacterial mimicking bilayers was constructed. Moreover, the cubosome interaction with Escherichia coli was directly visualized using super-resolution laser scanning microscopy and cryogenic electron tomography. We could conclude that cubosomes loaded with LL-37 adsorbed and distorted bacterial membranes, providing evidence that the peptide-loaded cubosomes function as an antimicrobial unit.
  •  
2.
  • Browning, Kathryn L., et al. (författare)
  • Effect of bilayer charge on lipoprotein lipid exchange
  • 2018
  • Ingår i: Colloids and Surfaces B. - : ELSEVIER SCIENCE BV. - 0927-7765 .- 1873-4367. ; 168, s. 117-125
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoproteins play a key role in the onset and development of atherosclerosis, the formation of lipid plaques at blood vessel walls. The plaque formation, as well as subsequent calcification, involves not only endothelial cells but also connective tissue, and is closely related to a wide range of cardiovascular syndromes, that together constitute the number one cause of death in the Western World. High (HDL) and low (LDL) density lipoproteins are of particular interest in relation to atherosclerosis, due to their protective and harmful effects, respectively. In an effort to elucidate the molecular mechanisms underlying this, and to identify factors determining lipid deposition and exchange at lipid membranes, we here employ neutron reflection (NR) and quartz crystal microbalance with dissipation (QCM-D) to study the effect of membrane charge on lipoprotein deposition and lipid exchange. Dimyristoylphosphatidylcholine (DMPC) bilayers containing varying amounts of negatively charged dimyristoylphosphatidylserine (DMPS) were used to vary membrane charge. It was found that the amount of hydrogenous material deposited from either HDL or LDL to the bilayer depends only weakly on membrane charge density. In contrast, increasing membrane charge resulted in an increase in the amount of lipids removed from the supported lipid bilayer, an effect particularly pronounced for LDL. The latter effects are in line with previously reported observations on atherosclerotic plaque prone regions of long-term hyperlipidaemia and type 2 diabetic patients, and may also provide some molecular clues into the relation between oxidative stress and atherosclerosis. 
  •  
3.
  •  
4.
  • Browning, Kathryn L., et al. (författare)
  • Human Lipoproteins at Model Cell Membranes : Effect of Lipoprotein Class on Lipid Exchange
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High and low density lipoproteins (HDL and LDL) are thought to play vital roles in the onset and development of atherosclerosis; the biggest killer in the western world. Key issues of initial lipoprotein (LP) interactions at cellular membranes need to be addressed including LP deposition and lipid exchange. Here we present a protocol for monitoring the in situ kinetics of lipoprotein deposition and lipid exchange/removal at model cellular membranes using the non-invasive, surface sensitive methods of neutron reflection and quartz crystal microbalance with dissipation. For neutron reflection, lipid exchange and lipid removal can be distinguished thanks to the combined use of hydrogenated and tail-deuterated lipids. Both HDL and LDL remove lipids from the bilayer and deposit hydrogenated material into the lipid bilayer, however, the extent of removal and exchange depends on LP type. These results support the notion of HDL acting as the 'good' cholesterol, removing lipid material from lipid-loaded cells, whereas LDL acts as the 'bad' cholesterol, depositing lipid material into the vascular wall.
  •  
5.
  • Hansen, Finja C., et al. (författare)
  • Differential Internalization of Thrombin-Derived Host Defense Peptides into Monocytes and Macrophages
  • 2022
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 14:5, s. 418-432
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteolytic cleavage of thrombin generates C-terminal host defense peptides exerting multiple immunomodulatory effects in response to bacterial stimuli. Previously, we reported that thrombin-derived C-terminal peptides (TCPs) are internalized in monocytes and macrophages in a time- and temperature-dependent manner. In this study, we investigated which endocytosis pathways are responsible for the internalization of TCPs. Using confocal microscopy and flow cytometry, we show that both clathrin-dependent and clathrin-independent pathways are involved in the internalization of the prototypic TCP GKY25 in RAW264.7 and human monocyte-derived M1 macrophages, whereas the uptake of GKY25 in monocytic THP-1 cells is mainly dynamin-dependent. Internalized GKY25 was transported to endosomes and finally lysosomes, where it remained detectable for up to 10 h. Comparison of GKY25 uptake with that of the natural occurring TCPs HVF18 and FYT21 indicates that the pathway of TCP endocytosis is not only cell type-dependent but also depends on the length and composition of the peptide as well as the presence of LPS and bacteria. Finally, using neutron reflectometry, we show that the observed differences between HVF18 and the other 2 TCPs may be explained partially by differences in membrane insertion. Taken together, we show that TCPs are differentially internalized into monocytes and macrophages.
  •  
6.
  • Häffner, Sara Malekkhaiat, et al. (författare)
  • Membrane Interactions of Virus-like Mesoporous Silica Nanoparticles
  • 2021
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:4, s. 6787-6800
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, we investigated lipid membrane interactions of silica nanoparticles as carriers for the antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In doing so, smooth mesoporous nanoparticles were compared to virus-like mesoporous nanoparticles, characterized by a "spiky"external surface, as well as to nonporous silica nanoparticles. For this, we employed a combination of neutron reflectometry, ellipsometry, dynamic light scattering, and ζ-potential measurements for studies of bacteria-mimicking bilayers formed by palmitoyloleoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol. The results show that nanoparticle topography strongly influences membrane binding and destabilization. We found that virus-like particles are able to destabilize such lipid membranes, whereas the corresponding smooth silica nanoparticles are not. This effect of particle spikes becomes further accentuated after loading of such particles with LL-37. Thus, peptide-loaded virus-like nanoparticles displayed more pronounced membrane disruption than either peptide-loaded smooth nanoparticles or free LL-37. The structural basis of this was clarified by neutron reflectometry, demonstrating that the virus-like nanoparticles induce trans-membrane defects and promote incorporation of LL-37 throughout both bilayer leaflets. The relevance of such effects of particle spikes for bacterial membrane rupture was further demonstrated by confocal microscopy and live/dead assays on Escherichia coli bacteria. Taken together, these findings demonstrate that topography influences the interaction of nanoparticles with bacteria-mimicking lipid bilayers, both in the absence and presence of antimicrobial peptides, as well as with bacteria. The results also identify virus-like mesoporous nanoparticles as being of interest in the design of nanoparticles as delivery systems for antimicrobial peptides.
  •  
7.
  • Isaksson, Simon, 1988, et al. (författare)
  • Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films
  • 2017
  • Ingår i: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 17:1, s. 476-485
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film to match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic-inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.
  •  
8.
  • Malekkhaiat Häffner, S., et al. (författare)
  • Composition effects on photooxidative membrane destabilization by TiO2 nanoparticles
  • 2021
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797. ; 584, s. 19-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Membrane interactions and photooxidative membrane destabilization of titanium dioxide (TiO2) nanoparticles were investigated, focusing on the effects of membrane composition, notably phospholipid headgroup charge and presence of cholesterol. For this, we employed a battery of state-of-the-art methods for studies of bilayers formed by zwitterionic palmitoyloleoylphosphatidylcholine (POPC) containing also polyunsaturated palmitoylarachidonoylphosphocholine (PAPC), as well as its mixtures with anionic palmitoyloleoylphosphatidylglycerol (POPG) and cholesterol. It was found that the TiO2 nanoparticles display close to zero charge at pH 7.4, resulting in aggregation. At pH 3.4, in contrast, the 6 nm TiO2 nanoparticles are well dispersed due to a strongly positive ζ-potential. Mirroring this pH dependence, TiO2 nanoparticles were observed to bind to negatively charged lipid bilayers at pH 3.4, but much less so at pH 7.4. While nanoparticle binding has some destabilizing effect alone, illumination with ultraviolet (UV) light accentuates membrane destabilization, a result of oxidative stress caused by generated reactive oxygen species (ROS). Neutron reflectivity (NR), quartz crystal microbalance (QCM), and small-angle X-ray scattering (SAXS) results all demonstrate that membrane composition strongly influences membrane interactions and photooxidative destabilization of lipid bilayers. In particular, the presence of anionic POPG makes the bilayers more sensitive to oxidative destabilization, whereas a stabilizing effect was observed in the presence of cholesterol. Also, structural aspects of peroxidation were found to depend strongly on membrane composition, notably the presence of anionic phospholipids. The results show that membrane interactions and UV-induced ROS generation act in concert and need to be considered together to understand effects of lipid membrane composition on UV-triggered oxidative destabilization by TiO2 nanoparticles, e.g., in the context of oxidative damage of bacteria and cells.
  •  
9.
  • Malekkhaiat Häffner, Sara, et al. (författare)
  • Interaction of Laponite with Membrane Components - Consequences for Bacterial Aggregation and Infection Confinement
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:17, s. 15389-15400
  • Tidskriftsartikel (refereegranskat)abstract
    • The antimicrobial effects of Laponite nanoparticles with or without loading of the antimicrobial peptide LL-37 was investigated along with their membrane interactions. The study combines data from ellipsometry, circular dichroism, fluorescence spectroscopy, particle size/ζ potential measurements, and confocal microscopy. As a result of the net negative charge of Laponite, loading of net positively charged LL-37 increases with increasing pH. The peptide was found to bind primarily to the outer surface of the Laponite nanoparticles in a predominantly helical conformation, leading to charge reversal. Despite their net positive charge, peptide-loaded Laponite nanoparticles did not kill Gram-negative Escherichia coli bacteria or disrupt anionic model liposomes. They did however cause bacteria flocculation, originating from the interaction of Laponite and bacterial lipopolysaccharide (LPS). Free LL-37, in contrast, is potently antimicrobial through membrane disruption but does not induce bacterial aggregation in the concentration range investigated. Through LL-37 loading of Laponite nanoparticles, the combined effects of bacterial flocculation and membrane lysis are observed. However, bacteria aggregation seems to be limited to Gram-negative bacteria as Laponite did not cause flocculation of Gram-positive Bacillus subtilis bacteria nor did it bind to lipoteichoic acid from bacterial envelopes. Taken together, the present investigation reports several novel phenomena by demonstrating that nanoparticle charge does not invariably control membrane destabilization and by identifying the ability of anionic Laponite nanoparticles to effectively flocculate Gram-negative bacteria through LPS binding. As demonstrated in cell experiments, such aggregation results in diminished LPS-induced cell activation, thus outlining a promising approach for confinement of infection and inflammation caused by such pathogens.
  •  
10.
  • Nordström, Randi, et al. (författare)
  • Membrane Interactions of Antimicrobial Peptide-Loaded Microgels
  • 2020
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 562, s. 322-332
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present study, lipid membrane interactions of anionic poly(ethyl acrylate-co-methacrylic acid) (MAA) microgels as carriers for the cationic antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) were investigated. In doing so, neutron reflectometry (NR), Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), zeta potential, ellipsometry, and circular dichroism spectroscopy (CD) experiments were employed to investigate the relative importance of membrane interactions of peptide-loaded microgel particles and of released peptide. For the free peptide, NR results showed membrane binding occurring preferentially in the tail region in a concentration-dependent manner. At low peptide concentration (0.3 mu M) only peptide insertion in the outer leaflet was seen, however, pronounced membrane defects and peptide present in both leaflets was observed at higher peptide concentration (5.0 LL-37 loaded into MAA microgels qualitatively mirrored these effects regarding both peptide localization within the membrane and concentration dependent defect formation. In addition, very limited membrane binding of microgel particles was observed, in agreement with FTIR-ATR and liposome leakage results. FTIR-ATR showed LL-37 to undergo alpha-helix formation on membrane insertion, also supported by CD results, the kinetics of which was substantially reduced for microgel-loaded LL-37 due to sustained peptide release. Together, these findings demonstrate that membrane interactions for microgel-loaded LL-37 are dominated by released peptide, but also that slow release of microgel-loaded LL-37 translates into kinetic effects on peptide-membrane interactions, relating to both peptide localization within the bilayer, and to bilayer structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (16)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Browning, Kathryn L. (11)
Malmsten, Martin (9)
Cardenas, Marite (6)
Malekkhaiat Häffner, ... (6)
Maric, Selma (5)
Browning, Kathryn (4)
visa fler...
Parra-Ortiz, Elisa (4)
Moulin, Martine (3)
Haertlein, Michael (3)
Nordström, Randi (3)
Skoda, Maximilian W. ... (3)
Schmidtchen, Artur (2)
Malmsten, M (2)
Pichler, Harald (2)
Forsyth, V. Trevor (2)
Andersson, Martin, 1 ... (2)
Bengtsson, Eva (2)
Campana, Mario (2)
Lind, Tania Kjelleru ... (2)
Nyström, Lina (2)
van der Plas, Marien ... (2)
Waldie, Sarah (2)
Maestro, Armando (2)
Strömstedt, Adam A., ... (1)
Höök, Fredrik, 1966 (1)
Nadeem, Aftab (1)
Strohmeier, Gernot A ... (1)
Lind, Tania (1)
Hedfalk, Kristina, 1 ... (1)
Micciulla, Samantha (1)
Ringstad, Lovisa (1)
Bengtsson, E (1)
Campbell, Richard A. (1)
Fredrikson, G. N. (1)
Boge, Lukas (1)
Damgaard, Liv (1)
Seth Caous, Josefin (1)
Hellsing, Maja (1)
Berti, Debora (1)
Bucciarelli, Saskia (1)
Barker, Robert David (1)
Fredrikson, Gunilla (1)
Lind, T. K. (1)
Maric, S. (1)
Cárdenas, M. (1)
Malekkhaiat-Häffner, ... (1)
Montis, Costanza (1)
Sebastiani, Federica (1)
Watkins, E. B. (1)
Zhao, Dongyuan (1)
visa färre...
Lärosäte
Uppsala universitet (10)
Lunds universitet (8)
Malmö universitet (6)
Chalmers tekniska högskola (2)
Göteborgs universitet (1)
Umeå universitet (1)
visa fler...
RISE (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (12)
Naturvetenskap (9)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy