SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Browning Kathryn L.) "

Search: WFRF:(Browning Kathryn L.)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Browning, Kathryn L., et al. (author)
  • Effect of bilayer charge on lipoprotein lipid exchange
  • 2018
  • In: Colloids and Surfaces B. - : ELSEVIER SCIENCE BV. - 0927-7765 .- 1873-4367. ; 168, s. 117-125
  • Journal article (peer-reviewed)abstract
    • Lipoproteins play a key role in the onset and development of atherosclerosis, the formation of lipid plaques at blood vessel walls. The plaque formation, as well as subsequent calcification, involves not only endothelial cells but also connective tissue, and is closely related to a wide range of cardiovascular syndromes, that together constitute the number one cause of death in the Western World. High (HDL) and low (LDL) density lipoproteins are of particular interest in relation to atherosclerosis, due to their protective and harmful effects, respectively. In an effort to elucidate the molecular mechanisms underlying this, and to identify factors determining lipid deposition and exchange at lipid membranes, we here employ neutron reflection (NR) and quartz crystal microbalance with dissipation (QCM-D) to study the effect of membrane charge on lipoprotein deposition and lipid exchange. Dimyristoylphosphatidylcholine (DMPC) bilayers containing varying amounts of negatively charged dimyristoylphosphatidylserine (DMPS) were used to vary membrane charge. It was found that the amount of hydrogenous material deposited from either HDL or LDL to the bilayer depends only weakly on membrane charge density. In contrast, increasing membrane charge resulted in an increase in the amount of lipids removed from the supported lipid bilayer, an effect particularly pronounced for LDL. The latter effects are in line with previously reported observations on atherosclerotic plaque prone regions of long-term hyperlipidaemia and type 2 diabetic patients, and may also provide some molecular clues into the relation between oxidative stress and atherosclerosis. 
  •  
2.
  •  
3.
  • Browning, Kathryn L., et al. (author)
  • Human Lipoproteins at Model Cell Membranes : Effect of Lipoprotein Class on Lipid Exchange
  • 2017
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Journal article (peer-reviewed)abstract
    • High and low density lipoproteins (HDL and LDL) are thought to play vital roles in the onset and development of atherosclerosis; the biggest killer in the western world. Key issues of initial lipoprotein (LP) interactions at cellular membranes need to be addressed including LP deposition and lipid exchange. Here we present a protocol for monitoring the in situ kinetics of lipoprotein deposition and lipid exchange/removal at model cellular membranes using the non-invasive, surface sensitive methods of neutron reflection and quartz crystal microbalance with dissipation. For neutron reflection, lipid exchange and lipid removal can be distinguished thanks to the combined use of hydrogenated and tail-deuterated lipids. Both HDL and LDL remove lipids from the bilayer and deposit hydrogenated material into the lipid bilayer, however, the extent of removal and exchange depends on LP type. These results support the notion of HDL acting as the 'good' cholesterol, removing lipid material from lipid-loaded cells, whereas LDL acts as the 'bad' cholesterol, depositing lipid material into the vascular wall.
  •  
4.
  • Hansen, Finja C., et al. (author)
  • Differential Internalization of Thrombin-Derived Host Defense Peptides into Monocytes and Macrophages
  • 2022
  • In: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 14:5, s. 418-432
  • Journal article (peer-reviewed)abstract
    • Proteolytic cleavage of thrombin generates C-terminal host defense peptides exerting multiple immunomodulatory effects in response to bacterial stimuli. Previously, we reported that thrombin-derived C-terminal peptides (TCPs) are internalized in monocytes and macrophages in a time- and temperature-dependent manner. In this study, we investigated which endocytosis pathways are responsible for the internalization of TCPs. Using confocal microscopy and flow cytometry, we show that both clathrin-dependent and clathrin-independent pathways are involved in the internalization of the prototypic TCP GKY25 in RAW264.7 and human monocyte-derived M1 macrophages, whereas the uptake of GKY25 in monocytic THP-1 cells is mainly dynamin-dependent. Internalized GKY25 was transported to endosomes and finally lysosomes, where it remained detectable for up to 10 h. Comparison of GKY25 uptake with that of the natural occurring TCPs HVF18 and FYT21 indicates that the pathway of TCP endocytosis is not only cell type-dependent but also depends on the length and composition of the peptide as well as the presence of LPS and bacteria. Finally, using neutron reflectometry, we show that the observed differences between HVF18 and the other 2 TCPs may be explained partially by differences in membrane insertion. Taken together, we show that TCPs are differentially internalized into monocytes and macrophages.
  •  
5.
  • Häffner, Sara Malekkhaiat, et al. (author)
  • Membrane Interactions of Virus-like Mesoporous Silica Nanoparticles
  • 2021
  • In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 15:4, s. 6787-6800
  • Journal article (peer-reviewed)abstract
    • In the present study, we investigated lipid membrane interactions of silica nanoparticles as carriers for the antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In doing so, smooth mesoporous nanoparticles were compared to virus-like mesoporous nanoparticles, characterized by a "spiky"external surface, as well as to nonporous silica nanoparticles. For this, we employed a combination of neutron reflectometry, ellipsometry, dynamic light scattering, and ζ-potential measurements for studies of bacteria-mimicking bilayers formed by palmitoyloleoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol. The results show that nanoparticle topography strongly influences membrane binding and destabilization. We found that virus-like particles are able to destabilize such lipid membranes, whereas the corresponding smooth silica nanoparticles are not. This effect of particle spikes becomes further accentuated after loading of such particles with LL-37. Thus, peptide-loaded virus-like nanoparticles displayed more pronounced membrane disruption than either peptide-loaded smooth nanoparticles or free LL-37. The structural basis of this was clarified by neutron reflectometry, demonstrating that the virus-like nanoparticles induce trans-membrane defects and promote incorporation of LL-37 throughout both bilayer leaflets. The relevance of such effects of particle spikes for bacterial membrane rupture was further demonstrated by confocal microscopy and live/dead assays on Escherichia coli bacteria. Taken together, these findings demonstrate that topography influences the interaction of nanoparticles with bacteria-mimicking lipid bilayers, both in the absence and presence of antimicrobial peptides, as well as with bacteria. The results also identify virus-like mesoporous nanoparticles as being of interest in the design of nanoparticles as delivery systems for antimicrobial peptides.
  •  
6.
  • Isaksson, Simon, 1988, et al. (author)
  • Protein-Containing Lipid Bilayers Intercalated with Size-Matched Mesoporous Silica Thin Films
  • 2017
  • In: Nano Letters. - : American Chemical Society (ACS). - 1530-6992 .- 1530-6984. ; 17:1, s. 476-485
  • Journal article (peer-reviewed)abstract
    • Proteins are key components in a multitude of biological processes, of which the functions carried out by transmembrane (membrane-spanning) proteins are especially demanding for investigations. This is because this class of protein needs to be incorporated into a lipid bilayer representing its native environment, and in addition, many experimental conditions also require a solid support for stabilization and analytical purposes. The solid support substrate may, however, limit the protein functionality due to protein material interactions and a lack of physical space. We have in this work tailored the pore size and pore ordering of a mesoporous silica thin film to match the native cell-membrane arrangement of the transmembrane protein human aquaporin 4 (hAQP4). Using neutron reflectivity (NR), we provide evidence of how substrate pores host the bulky water-soluble domain of hAQP4, which is shown to extend 7.2 nm into the pores of the substrate. Complementary surface analytical tools, including quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence microscopy, revealed successful protein-containing supported lipid bilayer (pSLB) formation on mesoporous silica substrates, whereas pSLB formation was hampered on nonporous silica. Additionally, electron microscopy (TEM and SEM), light scattering (DLS and stopped-flow), and small-angle X-ray scattering (SAXS) were employed to provide a comprehensive characterization of this novel hybrid organic-inorganic interface, the tailoring of which is likely to be generally applicable to improve the function and stability of a broad range of membrane proteins containing water-soluble domains.
  •  
7.
  • Malekkhaiat Häffner, Sara, et al. (author)
  • Interaction of Laponite with Membrane Components - Consequences for Bacterial Aggregation and Infection Confinement
  • 2019
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:17, s. 15389-15400
  • Journal article (peer-reviewed)abstract
    • The antimicrobial effects of Laponite nanoparticles with or without loading of the antimicrobial peptide LL-37 was investigated along with their membrane interactions. The study combines data from ellipsometry, circular dichroism, fluorescence spectroscopy, particle size/ζ potential measurements, and confocal microscopy. As a result of the net negative charge of Laponite, loading of net positively charged LL-37 increases with increasing pH. The peptide was found to bind primarily to the outer surface of the Laponite nanoparticles in a predominantly helical conformation, leading to charge reversal. Despite their net positive charge, peptide-loaded Laponite nanoparticles did not kill Gram-negative Escherichia coli bacteria or disrupt anionic model liposomes. They did however cause bacteria flocculation, originating from the interaction of Laponite and bacterial lipopolysaccharide (LPS). Free LL-37, in contrast, is potently antimicrobial through membrane disruption but does not induce bacterial aggregation in the concentration range investigated. Through LL-37 loading of Laponite nanoparticles, the combined effects of bacterial flocculation and membrane lysis are observed. However, bacteria aggregation seems to be limited to Gram-negative bacteria as Laponite did not cause flocculation of Gram-positive Bacillus subtilis bacteria nor did it bind to lipoteichoic acid from bacterial envelopes. Taken together, the present investigation reports several novel phenomena by demonstrating that nanoparticle charge does not invariably control membrane destabilization and by identifying the ability of anionic Laponite nanoparticles to effectively flocculate Gram-negative bacteria through LPS binding. As demonstrated in cell experiments, such aggregation results in diminished LPS-induced cell activation, thus outlining a promising approach for confinement of infection and inflammation caused by such pathogens.
  •  
8.
  • Nordström, Randi, et al. (author)
  • Membrane Interactions of Antimicrobial Peptide-Loaded Microgels
  • 2020
  • In: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 562, s. 322-332
  • Journal article (peer-reviewed)abstract
    • In the present study, lipid membrane interactions of anionic poly(ethyl acrylate-co-methacrylic acid) (MAA) microgels as carriers for the cationic antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) were investigated. In doing so, neutron reflectometry (NR), Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR), zeta potential, ellipsometry, and circular dichroism spectroscopy (CD) experiments were employed to investigate the relative importance of membrane interactions of peptide-loaded microgel particles and of released peptide. For the free peptide, NR results showed membrane binding occurring preferentially in the tail region in a concentration-dependent manner. At low peptide concentration (0.3 mu M) only peptide insertion in the outer leaflet was seen, however, pronounced membrane defects and peptide present in both leaflets was observed at higher peptide concentration (5.0 LL-37 loaded into MAA microgels qualitatively mirrored these effects regarding both peptide localization within the membrane and concentration dependent defect formation. In addition, very limited membrane binding of microgel particles was observed, in agreement with FTIR-ATR and liposome leakage results. FTIR-ATR showed LL-37 to undergo alpha-helix formation on membrane insertion, also supported by CD results, the kinetics of which was substantially reduced for microgel-loaded LL-37 due to sustained peptide release. Together, these findings demonstrate that membrane interactions for microgel-loaded LL-37 are dominated by released peptide, but also that slow release of microgel-loaded LL-37 translates into kinetic effects on peptide-membrane interactions, relating to both peptide localization within the bilayer, and to bilayer structure.
  •  
9.
  • Nyström, Lina, et al. (author)
  • Avidin-biotin cross-linked microgel multilayers as carriers for antimicrobial peptides
  • 2018
  • In: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 19:12, s. 4691-4702
  • Journal article (peer-reviewed)abstract
    • Herein, we report on the formation of cross-linked antimicrobial peptide-loaded microgel multilayers. Poly(ethyl acrylate- co-methacrylic acid) microgels were synthesized and functionalized with biotin to enable the formation of microgel multilayers cross-linked with avidin. Microgel functionalization and avidin cross-linking were verified with infrared spectroscopy, dynamic light scattering, and z-potential measurements, while multilayer formation (up to four layers) was studied with null ellipsometry and quartz crystal microbalance with dissipation (QCM-D). Incorporation of the antimicrobial peptide KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR) into the microgel multilayers was achieved either in one shot after multilayer formation or through addition after each microgel layer deposition. The latter was found to strongly promote peptide incorporation. Further, antimicrobial properties of the peptide-loaded microgel multilayers against Escherichia coli were investigated and compared to those of a peptide-loaded microgel monolayer. Results showed a more pronounced suppression in bacterial viability in suspension for the microgel multilayers. Correspondingly, LIVE/DEAD staining showed promoted disruption of adhered bacteria for the KYE28-loaded multilayers. Taken together, cross-linked microgel multilayers thus show promise as high load surface coatings for antimicrobial peptides.
  •  
10.
  • Parra-Ortiz, Elisa, et al. (author)
  • Effects of oxidation on the physicochemical properties of polyunsaturated lipid membranes
  • 2019
  • In: Journal of Colloid and Interface Science. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0021-9797 .- 1095-7103. ; 538, s. 404-419
  • Journal article (peer-reviewed)abstract
    • The exposure of biological membranes to reactive oxygen species (ROS) plays an important role in many pathological conditions such as inflammation, infection, or sepsis. ROS also modulate signaling processes and produce markers for damaged tissue. Lipid peroxidation, mainly affecting polyunsaturated phospholipids, results in a complex mixture of oxidized products, which may dramatically alter membrane properties. Here, we have employed a set of biophysical and surface-chemical techniques, including neutron and X-ray scattering, to study the structural, compositional, and stability changes due to oxidative stress on phospholipid bilayers composed of lipids with different degrees of polyunsaturation. In doing so, we obtained real-time information about bilayer degradation under in situ UV exposure using neutron reflectometry. We present a set of interrelated physicochemical effects, including gradual increases in area per molecule, head group and acyl chain hydration, as well as bilayer thinning, lateral phase separation, and defect formation leading to content loss upon membrane oxidation. Such effects were observed to depend on the presence of polyunsaturated phospholipids in the lipid membrane, suggesting that these may also play a role in the complex oxidation processes occurring in cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11
Type of publication
journal article (11)
Type of content
peer-reviewed (10)
other academic/artistic (1)
Author/Editor
Browning, Kathryn L. (11)
Malmsten, Martin (8)
Malekkhaiat Häffner, ... (6)
Parra-Ortiz, Elisa (4)
Cardenas, Marite (3)
Schmidtchen, Artur (2)
show more...
Nordström, Randi (2)
Lind, Tania Kjelleru ... (2)
Maric, Selma (2)
Nyström, Lina (2)
Skoda, Maximilian W. ... (2)
van der Plas, Marien ... (2)
Strömstedt, Adam A., ... (1)
Malmsten, M (1)
Höök, Fredrik, 1966 (1)
Nadeem, Aftab (1)
Lind, Tania (1)
Andersson, Martin, 1 ... (1)
Hedfalk, Kristina, 1 ... (1)
Micciulla, Samantha (1)
Bengtsson, E (1)
Bengtsson, Eva (1)
Campbell, Richard A. (1)
Fredrikson, G. N. (1)
Campana, Mario (1)
Berti, Debora (1)
Bucciarelli, Saskia (1)
Barker, Robert David (1)
Fredrikson, Gunilla (1)
Lind, T. K. (1)
Maric, S. (1)
Cárdenas, M. (1)
Montis, Costanza (1)
Watkins, E. B. (1)
Maestro, Armando (1)
Zhao, Dongyuan (1)
Isaksson, Simon, 198 ... (1)
Hansen, Finja C. (1)
Häffner, Sara Malekk ... (1)
Jørgensen, Elin (1)
Li, Xiaomin (1)
Strömstedt, Adam A., ... (1)
Mörck Nielsen, Hanne (1)
Dangaard, Liv Sofia ... (1)
Cooper, Joshaniel F. ... (1)
Al-Rammahi, Noor (1)
Damgaard, Liv S. E. (1)
Saerbeck, Thomas (1)
show less...
University
Uppsala University (8)
Lund University (6)
Malmö University (3)
University of Gothenburg (1)
Umeå University (1)
Chalmers University of Technology (1)
Language
English (11)
Research subject (UKÄ/SCB)
Medical and Health Sciences (9)
Natural sciences (5)
Engineering and Technology (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view