SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Bruelle Celine) "

Sökning: WFRF:(Bruelle Celine)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Do, Hai Thi, et al. (författare)
  • Nerve growth factor (NGF) and pro-NGF increase low-density lipoprotein (LDL) receptors in neuronal cells partly by different mechanisms : role of LDL in neurite outgrowth
  • 2016
  • Ingår i: Journal of Neurochemistry. - : WILEY. - 0022-3042 .- 1471-4159. ; 136:2, s. 306-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-density lipoprotein receptors (LDLRs) mediate the uptake of lipoprotein particles into cells, as studied mainly in peripheral tissues. Here, we show that nerve growth factor (NGF) increases LDLR levels in PC6.3 cells and in cultured septal neurons from embryonic rat brain. Study of the mechanisms showed that NGF enhanced transcription of the LDLR gene, acting mainly via Tropomyosin receptor kinase A receptors. Simvastatin, a cholesterol-lowering drug, also increased the LDLR expression in PC6.3 cells. In addition, pro-NGF and pro-brain-derived neurotrophic factor, acting via the p75 neurotrophin receptor (p75NTR) also increased LDLRs. We further observed that Myosin Regulatory Light Chain-Interacting Protein/Inducible Degrader of the LDLR (Mylip/Idol) was down-regulated by pro-NGF, whereas the other LDLR regulator, proprotein convertase subtilisin kexin 9 (PCSK9) was not significantly changed. On the functional side, NGF and pro-NGF increased lipoprotein uptake by neuronal cells as shown using diacetyl-labeled LDL. The addition of serum-derived lipoprotein particles in conjunction with NGF or simvastatin enhanced neurite outgrowth. Collectively, these results show that NGF and simvastatin are able to stimulate lipoprotein uptake by neurons with a positive effect on neurite outgrowth. Increases in LDLRs and lipoprotein particles in neurons could play a functional role during brain development, in neuroregeneration and after brain injuries.
  •  
2.
  • Do, Hai Thi, et al. (författare)
  • Reciprocal Regulation of Very Low Density Lipoprotein Receptors (VLDLRs) in Neurons by Brain-derived Neurotrophic Factor (BDNF) and Reelin INVOLVEMENT OF THE E3 LIGASE Mylip/Idol
  • 2013
  • Ingår i: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 288:41, s. 29613-29620
  • Tidskriftsartikel (refereegranskat)abstract
    • BDNF positively influences various aspects of neuronal migration, maturation, and survival in the developing brain. Reelin in turn mediates inhibitory signals to migrating neuroblasts, which is crucial for brain development. The interplay between BDNF and Reelin signaling in neurodevelopment is not fully understood. We show here that BDNF increased the levels of the Reelin receptor (VLDL receptor (VLDLR)) in hippocampal neurons by increasing gene expression. In contrast, Reelin decreased VLDLRs, which was accompanied by an increase in the levels of the E3 ligase Mylip/Idol in neurons. Down-regulation of Mylip/Idol using shRNAs abrogated the decrease in VLDLRs induced by Reelin. These results show that VLDLRs are tightly regulated in hippocampal neurons by both transcriptional and post-transcriptional mechanisms. The regulation of VLDLR by BDNF and Reelin may affect the migration of neurons and contribute to neurodevelopmental disorders in the nervous system.
  •  
3.
  • Hyrskyluoto, Alise, et al. (författare)
  • Ubiquitin-specific protease-14 reduces cellular aggregates and protects against mutant huntingtin-induced cell degeneration : involvement of the proteasome and ER stress-activated kinase IRE1 alpha
  • 2014
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 23:22, s. 5928-5939
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington's disease (HD) is an autosomal inherited neurological disease caused by a CAG-repeat expansion in the first exon of huntingtin gene encoding for the huntingtin protein (Htt). In HD, there is an accumulation of intracellular aggregates of mutant Htt that negatively influence cellular functions. The aggregates contain ubiquitin, and part of the HD pathophysiology could result from an imbalance in cellular ubiquitin levels. Deubiquitinating enzymes are important for replenishing the ubiquitin pool, but less is known about their roles in brain diseases. We show here that overexpression of the ubiquitin-specific protease-14 (Usp14) reduces cellular aggregates in mutant Htt-expressing cells mainly via the ubiquitin proteasome system. We also observed that the serine-threonine kinase IRE1 involved in endoplasmic reticulum (ER) stress responses is activated in mutant Htt-expressing cells in culture as well as in the striatum of mutant Htt transgenic (BACHD) mice. Usp14 interacted with IRE1 in control cells but less in mutant Htt-expressing cells. Overexpression of Usp14 in turn was able to inhibit phosphorylation of IRE1 alpha in mutant Htt-overexpressing cells and to protect against cell degeneration and caspase-3 activation. These results show that ER stress-mediated IRE1 activation is part of mutant Htt toxicity and that this is counteracted by Usp14 expression. Usp14 effectively reduced cellular aggregates and counteracted cell degeneration indicating an important role of this protein in mutant Htt-induced cell toxicity.
  •  
4.
  • Koivuniemi, Raili, et al. (författare)
  • Hepatocyte Growth Factor Activator Inhibitor-1 Is Induced by Bone Morphogenetic Proteins and Regulates Proliferation and Cell Fate of Neural Progenitor Cells
  • 2013
  • Ingår i: PLOS ONE. - : PUBLIC LIBRARY SCIENCE. - 1932-6203. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neural progenitor cells (NPCs) in the developing neuroepithelium are regulated by intrinsic and extrinsic factors. There is evidence that NPCs form a self-supporting niche for cell maintenance and proliferation. However, molecular interactions and cell-cell contacts and the microenvironment within the neuroepithelium are largely unknown. We hypothesized that cellular proteases especially those associated with the cell surface of NPCs play a role in regulation of progenitor cells in the brain. Methodology/Principal Findings: In this work, we show that NPCs, isolated from striatal anlage of developing rat brain, express hepatocyte growth factor activator inhibitor-1 and -2 (HAI-1 and HAI-2) that are cell surface-linked serine protease inhibitors. In addition, radial glia cells derived from mouse embryonic stem cells also express HAI-1 and HAI-2. To study the functional significance of HAI-1 and HAI-2 in progenitor cells, we modulated their levels using expression plasmids or silencing RNA (siRNA) transfected into the NPCs. Data showed that overexpression of HAI-1 or HAI-2 decreased cell proliferation of cultured NPCs, whilst their siRNAs had opposite effects. HAI-1 also influenced NPC differentiation by increasing the number of glial fibrillary acidic protein (GFAP) expressing cells in the culture. Expression of HAI-1 in vivo decreased cell proliferation in developing neuroepithelium in E15 old animals and promoted astrocyte cell differentiation in neonatal animals. Studying the regulation of HAI-1, we observed that Bone morphogenetic protein-2 (BMP-2) and BMP-4 increased HAI-1 levels in the NPCs. Experiments using HAI-1-siRNA showed that these BMPs act on the NPCs partly in a HAI-1-dependent manner. Conclusions: This study shows that the cell-surface serine protease inhibitors, HAI-1 and HAI-2 influence proliferation and cell fate of NPCs and their expression levels are linked to BMP signaling. Modulation of the levels and actions of HAI-1 in NPCs may be of a potential value in stem cell therapies in various brain diseases.
  •  
5.
  •  
6.
  • Makela, Johanna, et al. (författare)
  • Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha mediates neuroprotection against excitotoxic brain injury in transgenic mice : role of mitochondria and X-linked inhibitor of apoptosis protein
  • 2016
  • Ingår i: European Journal of Neuroscience. - : WILEY. - 0953-816X .- 1460-9568. ; 43:5, s. 626-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1 in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1 in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1 transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomic analyses and immunoblottings. Cultured hippocampal neurons from PGC-1 transgenic mice were more resistant to cell degeneration induced by the glutamate receptor agonist kainic acid. In vivo kainic acid induced excitotoxic cell death in the hippocampus at 48h in wild-type mice but significantly less so in PGC-1 transgenic mice. However, at later time points cell degeneration was also evident in the transgenic mouse hippocampus, indicating that PGC-1 overexpression can induce a delay in cell death. Immunoblotting showed that X-linked inhibitor of apoptosis protein (XIAP) was increased in PGC-1 transgenic hippocampus with no significant changes in Bcl-2 or Bcl-X. Collectively, these results show that PGC-1 overexpression contributes to enhanced neuronal viability by stimulating mitochondria number and respiration and increasing levels of OXPHOS proteins and the anti-apoptotic protein XIAP.
  •  
7.
  • Pham, Dan Duc, et al. (författare)
  • p75 Neurotrophin Receptor Signaling Activates Sterol Regulatory Element-binding Protein-2 in Hepatocyte Cells via p38 Mitogen-activated Protein Kinase and Caspase-3
  • 2016
  • Ingår i: Journal of Biological Chemistry. - : AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC. - 0021-9258 .- 1083-351X. ; 291:20, s. 10747-10758
  • Tidskriftsartikel (refereegranskat)abstract
    • Nerve growth factor (NGF) influences the survival and differentiation of a specific population of neurons during development, but its role in non-neuronal cells has been less studied. We observed here that NGF and its pro-form, pro-NGF, are elevated in fatty livers from leptin-deficient mice compared with controls, concomitant with an increase in low density lipoprotein receptors (LDLRs). Stimulation of mouse primary hepatocytes withNGFor pro-NGF increased LDLR expression through the p75 neurotrophin receptor (p75NTR). Studies using Huh7 human hepatocyte cells showed that the neurotrophins activate the sterol regulatory element-binding protein-2 (SREBP2) that regulates genes involved in lipid metabolism. The mechanisms for this were related to stimulation of p38 mitogen-activated protein kinase (p38 MAPK) and activation of caspase-3 and SREBP2 cleavage following NGF and pro-NGF stimulations. Cell fractionation experiments showed that caspase-3 activity was increased particularly in the membrane fraction that harbors SREBP2 and caspase-2. Experiments showed further that caspase-2 interacts with pro-caspase-3 and that p38 MAPK reduced this interaction and caused caspase-3 activation. Because of the increased caspase-3 activity, the cells did not undergo cell death following p75NTR stimulation, possibly due to concomitant activation of nuclear factor-kappa B (NF-kappa B) pathway by the neurotrophins. These results identify a novel signaling pathway triggered by ligand-activated p75NTR that via p38MAPK and caspase-3 mediate the activation of SREBP2. This pathway may regulate LDLRs and lipid uptake particularly after injury or during tissue inflammation accompanied by an increased production of growth factors, including NGF and pro-NGF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy