SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Brumell John H) "

Search: WFRF:(Brumell John H)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes
  • 2008
  • In: Autophagy. - : Landes Bioscience. - 1554-8627 .- 1554-8635. ; 4:2, s. 151-175
  • Research review (peer-reviewed)abstract
    • Research in autophagy continues to accelerate,1 and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.2,3 There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
  •  
4.
  • Chaturvedi, Swasti, et al. (author)
  • Slit2 Prevents Neutrophil Recruitment and Renal Ischemia-Reperfusion Injury : english
  • 2013
  • In: Journal of the American Society of Nephrology. - 1046-6673. ; 24:8, s. 1274-1287
  • Journal article (peer-reviewed)abstract
    • Neutrophils recruited to the postischemic kidney contribute to the pathogenesis of ischemia-reperfusion injury (IRI), which is the most common cause of renal failure among hospitalized patients. The Slit family of secreted proteins inhibits chemotaxis of leukocytes by preventing activation of Rho-family GTPases, suggesting that members of this family might modulate the recruitment of neutrophils and the resulting IRI. Here, in static and microfluidic shear assays, Slit2 inhibited multiple steps required for the infiltration of neutrophils into tissue. Specifically, Slit2 blocked the capture and firm adhesion of human neutrophils to inflamed vascular endothelial barriers as well as their subsequent transmigration. To examine whether these observations were relevant to renal IRI, we administered Slit2 to mice before bilateral clamping of the renal pedicles. Assessed at 18 hours after reperfusion, Slit2 significantly inhibited renal tubular necrosis, neutrophil and macrophage infiltration, and rise in plasma creatinine. In vitro, Slit2 did not impair the protective functions of neutrophils, including phagocytosis and superoxide production, and did not inhibit neutrophils from killing the extracellular pathogen Staphylococcus aureus. In vivo, administration of Slit2 did not attenuate neutrophil recruitment or bacterial clearance in mice with ascending Escherichia coli urinary tract infections and did not increase the bacterial load in the livers of mice infected with the intracellular pathogen Listeria monocytogenes. Collectively, these results suggest that Slit2 may hold promise as a strategy to combat renal IRI without compromising the protective innate immune response.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4
Type of publication
journal article (2)
research review (2)
Type of content
peer-reviewed (4)
Author/Editor
Kominami, Eiki (3)
Simon, Hans-Uwe (3)
Mograbi, Baharia (3)
Lopez-Otin, Carlos (3)
Noda, Takeshi (3)
Nishino, Ichizo (3)
show more...
Yue, Zhenyu (3)
Johansen, Terje (3)
Simonsen, Anne (3)
Kroemer, Guido (3)
Brumell, John H. (3)
Simone, Cristiano (3)
Sandri, Marco (3)
Sulzer, David (3)
Kundu, Mondira (3)
Martinet, Wim (3)
Sadoshima, Junichi (3)
Lü, Bo (3)
Ballabio, Andrea (3)
Stenmark, Harald (3)
Piacentini, Mauro (3)
Sasakawa, Chihiro (3)
Yoshimori, Tamotsu (3)
Klionsky, Daniel J. (3)
Abeliovich, Hagai (3)
Agostinis, Patrizia (3)
Biard-Piechaczyk, Ma ... (3)
Camougrand, Nadine (3)
Cecconi, Francesco (3)
Chen, Yingyu (3)
Chin, Lih-Shen (3)
Codogno, Patrice (3)
Coto-Montes, Ana (3)
Debnath, Jayanta (3)
Deretic, Vojo (3)
Djavaheri-Mergny, Mo ... (3)
Elazar, Zvulun (3)
Eskelinen, Eeva-Liis ... (3)
Fueyo, Juan (3)
Gao, Fen-Biao (3)
He, You-Wen (3)
Huang, Wei-Pang (3)
Jiang, Xuejun (3)
Jin, Shengkan (3)
Kang, Chanhee (3)
Kimchi, Adi (3)
Kitamoto, Katsuhiko (3)
Knecht, Erwin (3)
Komatsu, Masaaki (3)
Levine, Beth (3)
show less...
University
Linköping University (3)
Lund University (3)
Karolinska Institutet (2)
Swedish University of Agricultural Sciences (2)
University of Gothenburg (1)
Umeå University (1)
show more...
Stockholm University (1)
show less...
Language
English (4)
Research subject (UKÄ/SCB)
Medical and Health Sciences (3)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view